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EXCUTIVE SUMMARY

Multimodal transportation is an evolving system in supply chain management and an effective
approach for facilitating the movement of cargo when different modes of transportation are
available and involved. Since one mode of transportation is usually insufficient for door-to-door
transportation of cargo, multimodal transportation has become an important concept. Hence, it
becomes necessary to transfer goods from one mode of transportation to another. For an effective
multimodal system, the different modes of transportation involved require close coordination and
precise synchronization, especially in terms of arrival times and cargo allocation (synchro-
modality).

The accuracy in arrival time of the vessel is most vital to imports, since it initiates the process of
a multimodal transfer. Lack of certainty in estimated time of arrival (ETA) creates problems like
delays and congestion at ports. It also leads to inadequate planning and resource management for
port facilities and receiving modes of transportation. Vessel Automatic Information System
(AIS) data provide vessels’ voyage information, including the ETA as determined by the vessel’s
captain/operator. This information (the captain’s ETA) is manually inputted into the system and
thus is subject to errors. Furthermore, captains sometimes forget to update such information,
which affects the results of the analysis. Hence, we propose a way to generate ETAs from a
system that does not require the captain’s ETA as input.

This research describes an approach that generates the ETA of vessels to the port terminals by
using machine learning and AIS data. The results of the analysis show that near-exact predictions
can be achieved without prior estimations by vessel captains. The results indicate that the farther
from the destination, the more errors are made in prediction. This is also evident in the
comparison of prediction errors between Bayport and Barbours Cut, two container terminals in
the Port of Houston. The analysis shows that predictions made at the terminal level are more
accurate than at the buoy level. The ETA predicted from this approach provides an adequate
timeframe within which terminal and trucking companies can plan for the vessel’s arrival.
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1.1 Problem Statement

Multimodal transportation is an evolving system in supply chain management and
movement of cargo. It has become an especially important concept because one mode of
transportation is often insufficient for door-to-door transportation of cargo. Hence, it becomes
necessary to transfer goods from one mode of transportation to another and to encourage the
management of this process by the same carrier company for effective coordination. For an
effective multimodal system, the various modes of transportation involved require
synchronization, especially in terms of arrival times and cargo allocation (synchro-modality).
Accuracy in estimating vessels’ arrival time is most vital to imports, since it initiates the process
of multimodal transfer. Lack of certainty in Estimated Time of Arrival (ETA) creates problems
like delays and congestion at ports. It also leads to inadequate planning and resource
management for port facilities and receiving modes of transportation. Vessel Automatic
Information System (AIS) data provide vessels’ voyage information, including the ETA as
determined by the captain. This information is manually inputted into the system, and thus is
subject to errors as captains sometimes forget to update such information, which affects the
results of analysis. Hence, we propose a way to generate ETAs from a system that does not
require the captain’s ETA as input.

1.2 Objectives

The objectives of this report are to (1) identify and collect AIS data for ETA
determination; (2) determine the ETA of vessels via a machine learning approach; and (3)
evaluate the accuracy of the determined ETA.

1.3 Expected Contributions

To accomplish the objectives of the study, several tasks have been undertaken to develop
a network for predicting vessels’ time of arrival when the captain’s ETA input to AIS is
unavailable. This will make it possible for the operators of carriers without prior knowledge of
the estimated duration of a given trip to generate ETAs for their vessels based on their current
locations and other available parameters.

1.4 Report Overview

Chapter 2 of the report provides information on the different structures and components
of a vessel-to-truck multimodal system and their interrelations. Stakeholders are identified, and
the importance and challenges of a multimodal system are presented. With inaccurate ETAs
identified as one of the problems of a multimodal system, Chapter 3 describes various
approaches for deriving the ETA of vessels from data. This chapter also reviews previous studies
on ETA determination, including those that employ machine learning to predict vessels’ time of
arrival to ports. Chapter 4 provides information on the Port of Houston, describes its activities,
specific characteristics/facilities, and uniqueness as it relates to container cargo. Chapter 5
describes the methodology of this research as well as the data collection and approach for
determining ETA from the data collected. Chapter 6 presents numerical results obtained from the
analysis. Chapter 7 concludes with a summary and discussion of directions for future research.



Chapter 2. Literature Review

2.1 Introduction

This chapter provides an overview of the operations of a multimodal system for container
cargo, while identifying its benefits and problems as well as ways of improving the system. The
review identifies the root cause of a major problem and presents existing practices that have
aimed to improve the system. This review also summarizes operations in the Port of Houston as
pertains to container cargo.

2.2 Multimodal Transportation System

Multimodal transportation is often mistaken with intermodal transportation. These two
terms are highly similar except that in multimodal transportation, the same carrier company is
responsible for moving the shipment in all legs and modes of transportation employed. Hence,
the whole transportation process is under a single contract or bill of lading. Multimodal “freight”
transportation can thus be defined as the movement of “cargo” by the coordinated and sequential
use of two or more modes of transportation under a single contract or bill of lading. Multimodal
transportation has been proven to increase the supply chain productivity of shipment and the
performance of distribution of cargo at large (Mokhtar and Shah, 2013).

Multimodal transportation can take various forms, depending on the elements (mode of
transportation) involved. Table 2.1 delineates these elements.

Table 2.1: Elements of Multimodal Transportation

Carriers Conveyance Terminal Infrastructure
Ocean | Shipping lines Ships and barges Ports Sea and inland waterways
Road Motor carriers Trucks Truck terminals Roadways
Air | Air cargo carriers Airplanes Airports Airways
Rail Railroads Trains Rail terminals Railways

Figures 1-3 illustrate three basic multimodal cargo movements: truck-marine, truck-air,
and truck-rail. It should be noted that more combinations of elements are possible in multimodal
transportation than listed above.

2.2.1 Truck-Marine

A typical truck-marine cargo movement starts with the shipper or consignor loading the
cargo into the container. A motor carrier picks up the container from the shipper and
transports it to the seaport by road. When the container arrives at seaport, it is transferred to
the vessel (ocean carrier) that transports it to an overseas port, where the container is
transferred to the second motor carrier for delivery to the consignee.
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Figure 2.1: Truck-Marine Multimodal Transportation

2.2.2 Truck-Air

In a typical truck-air multimodal cargo movement, a motor carrier picks up the cargo from
the shipper or consignor and transports it to an airport freight terminal. The cargo is then
transferred to the airplane, which transports it to another airport, where a second motor
carrier picks it up and delivers it to the consignee.
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Figure 2.2: Truck-Air Multimodal Transportation

2.2.3 Truck-Rail

In a truck-rail combination, a motor carrier picks up the cargo from the shipper and transports
it to the rail terminal, where it is transferred to a rail car. The cargo is transported by rail to
another rail terminal, where the second motor carrier picks it up and delivers to the
consignee.
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Figure 2.3: Truck-Rail Multimodal Transportation

Which mode of transportation to employ is a critical decision and highly dependent on the
performance variables and availability. Apart from the logistic cost of moving freight, some
of the most important factors to consider when selecting the mode of transportation,
according to the Center for Urban Transportation Research (CUTR) at the University of
South Florida, are schedule reliability and trip time. Shipment delays may affect the logistic
costs, for example, by increasing the inventory cost or adding production cost, which in turn
reduces the system’s reliability (Notteboom, 2006).

2.3 Vessels in Multimodal Transportation

For the first time since 2010, the economic growth rate has outperformed expectations. In
2017, the GDP grew by 3.7%, and this trend is expected to continue through 2018 with a
prediction of 4.0% growth (Hatzius et al., 2017). Growth in GDP, trade and seaborne shipments



are interlinked and continue to move in tandem (Maritime-insight, 2015). The era of rapid
economic and technical-technological development of modern production requires a
transportation system that is well-organized and, above all, safe. Maritime transportation
involves transportation of passengers and goods by sea, also known as “shipping trade,” which
most often is cargo shipping. Samija (n.d.) stated that shipping operations are operated in
accordance with their operational processes and quality control policies. These processes and
policies are supervised by competent state institutions and international organizations for control
of maritime navigation.

The basic function of maritime transportation is to physically transport cargo from the
area of supply to the area of demand, following regulated procedures and policies that facilitate
the activity. Essential for the movement of goods by maritime transportation are the following
components:

e functional infrastructure, such as ports/terminals;

e means of transportation, such as ships and barges in good working condition; and

e organizational systems to ensure that ships and fixed infrastructure are used
effectively and efficiently.

Maritime transportation has been highly relevant in multimodal transportation and
transportation of cargo in general, due to its advantages in safety, energy efficiency, and
environmental quality. Table 2.2 shows the advantages of maritime transportation over rail
transportation. The capacity of cargo vessels is its biggest advantage over other modes, but this is
also subject to vessel size (Tennessee Tombigbee Waterway).

Table 2.2: Comparing Vessel to Rail Car and 100-Car Train Unit

Number of.mlles per Hydro.carbons Deaths per billion
gallon carrying one ton emitted ton-miles
of cargo (Ibs/ton-mile)
Barge capacities 514 0.0009 0.01
One rail car 202 0.0046 0.84
100-car train unit 59 0.006 1.15

Source: Tennessee Tombigbee Waterway (2017)

Another great advantage of maritime transportation is its cost. Based on the data
presented by Ballou (1998) and displayed in Table 2.3, maritime shipping has a lower cost per
ton-mile than the rail and road transportation mode. This gives preference to the selection of
vessels as a mode transportation, especially for large cargo.

Table 2.3: Cost Associated with Different Modes of Transportation (per ton-mile)

Mode Maritime Rail Road
Cost (1995 USD) 1¢ 3¢ 25¢
Cost (2014 USD) 1.6¢ 5.0¢ $3.88

Source: Ballou (1998)




2.4 Trucks in Multimodal Transportation

The importance of trucks to multimodal transportation cannot be over-emphasized. In
most cases, a truck begins and ends the movement of freight either by rail, vessel or plane.
Although the cost of transporting by road is higher than by other means, the accessibility and
efficient network capacity of the road cannot be matched. The volume of freight moved by truck
has grown in tandem with the increase in the marine, rail and air freight volume. Overall freight
tonnage is expected to grow between 2016 and 2027 by 35%. Over that same period, the amount
of freight moved by trucks is expected to grow by 27%. Truckload volumes will grow 2%
annually between 2016 and 2022 and 1.6% per year thereafter until 2027 (American Trucking
Associations 2017). Another publication by the USDOT (2018) forecasts a 44% increase in the
tonnage moved by trucks between 2015 and 2045, which is approximately a 1.5% increase
annually (see Table 2.4). This value is very close to figures stated by American Trucking
Associations (2017). Therefore, as the years go by, trucks will likely be needed more.

Table 2.4: Annual Tons of Freight Moved across the US and Projected Increase
2015 2045 Increase
Truck 11.5 billion 16.5 billion 44%
Rail 1.7 billion 2.1 billion 24%
Water 835 million 1.2 billion 38%
Air 7 billion 24 billion 234%
Total 18 billion 25.3 billion 40%

Source: USDOT - Beyond Traffic 2045 (2018)

Road transportation is also highly relevant to freight movement, because it has the
highest network connectivity, which in turn promotes end-to-end delivery of cargo. Figure 2.4
displays the network for 2011 commodity movement. Highways constituted a major network
throughout the US. They even support the inland waterways; as they are mainly used along the
Mississippi River and its tributaries (Dong et al., 2015).
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Figure 2.4: Tonnage on Highways, Railroads, and Inland Waterways in 2011

2.5 Containerization in Multimodal Transportation

Containerization is the generalized use of the container as a support for freight
transportation. It has increasingly been adopted as a mode for supporting freight distribution
since a growing number of transportation systems can handle these standardized containers.
Efficiency in the movement of freight from one location to another using just one mode of
transportation has always been limited. It has remained so due to the difficulties encountered
when transferring goods from one mode of transportation to another. Shippers incur additional
terminal costs and delays when load unit needs to be changed, which is common for bulk
transportation (Rodrigue et al., 2006).

A shift to multimodal transportation was encouraged by the success achieved through the
introduction of the container. The most obvious advantage of using shipping containers is the
fact that it makes loading and unloading easier and enables rapid change from one mode to
another (Broeze, 2002). Containerization has impacted the conventional transportation system in
two distinct ways — spatially and organizationally. With the introduction of the container system,
processes in the port have drastically changed in terms of equipment, manpower, and port
charges. This has enhanced organized port operations although complex; however, the
implementation of a container system achieves efficiency by promoting an organized structure at
the terminals. Containerization has also encouraged transportation companies to embrace



multimodal operations. The focus is now more on the organization of the transportation industry
and the synchronization of an integrated logistical system (Carrese and Tatarelli, 2011).

To operate an efficient multimodal system, intensive co-operation and co-ordination
among the various transportation modes are essential. Containers have the advantage of being
used by several modes of transportation (i.e., maritime, rail and road) since these modes can
handle containers smoothly. International Standardization for Organization (ISO) containers are
10, 20, 30 or 40 feet long. However, for measurement, the reference size container 20 feet long,
8 feet high and 8 feet wide, corresponding to the twenty-foot equivalent units (TEUs). The most
common container that can be loaded on ship, truck or railcar is 40 feet long (Mokhtar and Shah,
2013).

2.6 Stakeholders in Multimodal Transportation
2.6.1 Carriers

Carriers are recognized companies chartered by the consignor for the transportation of cargo
from origin to destination. In the case of a marine-truck multimodal system, the carrier splits
its activities into vessel transportation and truck transportation. To carry out this task, they
operate a fleet of vessels that are suited for transporting the type of cargo intended. Vessel
carriers can transport cargo in containers, tankers or other means. A carrier in a multimodal
system is known as a Multimodal Transportation Operator (MTO). The type of cargo
transported by the vessels determines the type of trucks that will be operated by the MTO.
The MTO is liable for any losses or damage to the goods as well as any delays in the delivery
while the goods are in their possession (Jashari, 2007).

2.6.2 Container Terminals

A container is a mode of cargo transportation that requires specialized ports and terminals for
effective handling. The facilities required to transport containers between ships and shore
include berths for docking the ship, land areas for container storage and handling equipment
like cranes, which are basically used to load and offload containers to and from the vessels
(Liu, 2010). A typical container terminal is represented in Figure 2.5. According to Steenken
(2004), a container terminal is divided into quayside and landside operations. Quayside
activity is responsible for transferring the containers between ship and shore. Quay cranes are
the main equipment used in this part of the terminal. Landside operations involve the transfer
of containers from the stacking area to modes of land transportation like trains and trucks.
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Figure 2.5: Schematic Representation of Container Terminal

2.6.3 Importers

Importers are the buyers and receivers of cargo in transported containers and play a
significant role in carrier selection as they are more interested in on-time and cost-efficient
delivery of goods at the specified location. Importers take into account the convenience they
can get from the use of a carrier. Importers are interested in receiving their goods in good
shape and within the agreed time-frame at the destination of interest.

2.7 Advantages of Multimodal Transportation

The multimodal transportation system is considered a game-changer as it is quite
effective in solving most cargo mobility issues. By combining more than one mode of
transportation and properly managing the entire process, it facilitates the best rate and timely
delivery. The introduction of multimodal transportation eliminates the need for lengthy
processing, as shown in Figure 2.5. Multimodal transportation has been of great benefit to the
movement of freight in the several ways:

a) Minimizes time loss at trans-shipment points — Due to continuous and unbroken
communication links maintained by multimodal transportation operators, there is
effective coordination of trans-shipment points, which avoids the time that would have
been lost if the transportation processes were segmented.

b) Provides faster transit of goods — Multimodal transportation physically shortens the
market as goods are transported quickly from one point to another. The disadvantages of
distance from markets and the typing-up of capital are eliminated. It also reduces the
distance between source materials and customers.



c) Reduces the burden of documentation and formalities — Multimodal transportation
minimizes the burden of multiple documentation and other formalities connected with
each segment of the transportation chain since one operator handles all modes.

d) Reduces cost of exports — The inherent advantages of a multimodal transportation system
help to minimize the cost of exports and improve the competitive position of the MTO.

e) Establishes only one agency to deal with — Consignee just needs to transact with the
MTO as far as transportation of goods is concerned. Multimodal transportation eliminates
the need to establish a connection with all entities individually.
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Figure 2.6: Segmented Transportation versus Multimodal Transportation

2.8 Factors Affecting the Efficiency of Multimodal Transportation

The growth in multimodal freight transportation is associated with the pressure for
improved performance. This warrants the identification of factors that could affect the efficiency
and throughput of the system. A major factor affecting multimodal transportation, and
particularly the truck-marine combination, is congestion. Congestion at the port could result from
vessel operators' poor schedule reliability, inefficiency of the transportation infrastructure that
links a marine terminal to roadways, and the time chosen by shippers or truckers to pick up their
shipments (World Shipping Council, 2015). Congestion will not shut down ports and terminals
but can have a devastating impact on reliance in multimodal services.

The efficiency of a transportation system is a function of its reliability. Reliability and
accuracy of vessels’ Estimated Time of Arrivals (ETAs) are some of the most important
characteristics of freight transportation. In an era of just-in-time inventory systems, the weakest
link of a multimodal system will not be the port or terminal operations but the reliability in



arrival time of the vessel to the port. Therefore, meeting the time announced in schedules is
significant to shipping lines. Unless the inaccuracy of ETAs is addressed, the multimodal system
as a whole will be inefficient. Schedule reliability may be the factor that shippers consider most
important when selecting a mode of transportation and planning their supply chains with realistic
expectations of delivery time (Notteboom, 2006).

Chung and Chiang (2011) categorized shipping activities into port assignments and

navigation by sea, which were further divided into factors and criteria that could influence
schedule reliability. These factors are as follows: operating strategy of shipping lines, staff in
shipping lines, process management in shipping lines, and port’s condition. The factors and
criteria are summarized in Table 2.5 below.

Table 2.5: Influential Factors on Schedule Reliability of Container Shipping Lines

Goal Objective Criteria Statement of criteria
@ @ Shipping lines need to choose suitable ports
s £ Planning suitable ports according to port condition, cargo volume,
E o0 etc.
e = Whether shipping lines execute the chase
£ B Chase strategy pping xeeu
== strategy or not
’g 2 Specialized terminal Shipping lines have invested in specialized
o ° investment terminals

Influential Factors on Schedule Reliability

Staff's sense of mission

Every staff member has strong sense of
mission in their work

Ability of staff to
coordinate with external
relations

Staff should coordinate well with market
players (e.g., port authority and customs) to
decrease waiting time and increase efficiency

Control and management
of staff in terminal

Shipping lines should effectively control and
manage staff in the terminal to avoid strike or
slow work pace

Process
management in | Staff in shipping lines

shipping lines

Well-arranged time
window

Shipping lines should plan the time window
appropriately

Planning the berth and
warehouse beforehand

Before arriving to port, shipping lines should
plan the berth and warehouse

Trans-ship arrangement

Shipping lines should trans-ship properly to
avoid delays in delivery

Ports'
condition

Free-flowing of ports'
access roads

Access roads of a port are free-flowing

Berth allocation

Berth allocation will influence operating time

Terminal efficiency

Terminal efficiency will influence operating
time

Source: Chung and Chiang, 2011
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Assessing the importance of each criterion identifies the significance of factors. In terms
of schedule reliability, results showed that ‘process management in shipping lines’ is the most
influential factor and ‘well-arranged time window’ is the most important factor. A total of 81.5%
of the criteria were split between the top five criteria — ‘well-arranged time window,’ ‘transship
arrangement,” ‘planning suitable ports,” ‘planning the berth and warehouse beforehand,” and
‘control and management of staff in the terminal.” These results show that time-related factors
are the top criteria; thus, the availability of a vessel’s accurate time of arrival to the port greatly
impacts the system’s efficiency. With this in mind, perfecting the ETA provided to shippers and
shipping companies is paramount to the industry’s growth.

2.9 Synchronizing Vessel and Truck Arrival Time

The most important performance measure for port operation is the turnaround time of
trucks in the terminal (Esmer, 2008). Their time has not reached its optimum due to various
factors, like the lack of synchronization in the time of arrival of vessels and the time of arrival of
loading trucks. This creates congestion at the ports, especially when trucks have to wait a long
time for the vessel’s arrival. Congestion is a major problem at ports and is becoming common at
major US ports. In an attempt to maximize profit, ocean carriers have employed bigger vessels,
which brings the benefit of providing more fuel efficiency and carrying more cargo. The
introduction of large vessels into the system calls for more trucks during offloading, which in
turn contributes to congestion at the terminals. Thus, a more synchronized logistic system should
be employed to compensate for this upgrade and the congestion it causes. Synchronization
between vessel arrival and the availability of trucks to pick up cargo can only be made possible if
there is accuracy in vessel’s ETA coupled with ‘just in time’ availability of trucks through an
effective operational plan.

For a synchronized system to be achieved in multimodal transportation, responsibilities
must be performed effectively by the trucking company, arriving vessel and terminal. Hence,
factors related to these different components need to be addressed.

2.9.1 Truck-Related Factors:

Trucking operation at the beginning or end of a multimodal process plays a very important
role in enhancing the effectiveness and synchronization of the process. Some of the basic
characteristics of the trucking operation that should be taken into consideration are traffic
condition before arrival at the terminal, availability of trucks, and capacity of the trucks.

Traffic before arriving at port

The traffic condition of roads leading to the terminal plays a major role in the timeliness
of the trucks. Upon a vessel’s arrival, it is very important that receiving trucks are
available. The availability of these trucks will only be possible when the trucking
company takes into consideration the traffic conditions of roads and any obstructions that
could prevent them from arriving at the terminal on time.
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Availability and capacity of trucks

A multimodal system will function well and have synchronized transfer of containers
when there are enough trucks to receive and transport containers from arriving vessels.
One of the problems that multimodal transportation seeks to eliminate is the use of
storage capacity. Hence, it is very pertinent for the available trucks to have sufficient
capacity to accommodate the containers carried by the arriving vessel.

2.9.2 Vessel-Related Factors

The activities of the vessels before arrival at the terminal are major determinants of the
seamless transfer of container to and from the truck. The most important factor here is the
effective communication between operators of the vessel, the terminal, and the trucks.
Information about the vessel should be constantly updated as changes occur in the sailing
activities. Information provided to truckers at the destination port should be up to date and
accurate so that the trucks can prepare properly for the vessel’s arrival. Information that
should be provided includes any delays, whether deliberate or accidental. A deliberate delay
may occur when the captain desires to arrive at the port at certain time of day. This might be
influenced by existing policies at the port of call. Some ports operate on daylight restrictions
for certain vessel. Hence, the ship captain may decide to lower his speed in order to arrive in
the daytime so as to avoid waiting after arrival. In the event that an uncontrollable delay is
experienced by the vessel due to damage or weather, such information should be provided to
the trucking company ahead of time.

2.9.3 Terminal-Related Factors

The terminal greatly impacts how seamlessly and effectively shipments can be transferred
from vessel to truck. Some basic characteristics of the terminal that determine this success
are its structure and size, its equipment for handling containers, and its security initiatives.

Structure and size of terminal

The way a terminal is structured greatly determines how smoothly the process flows. For
a terminal to be effective, three attributes must be considered in the design and
arrangement of the facility: safety, free flow, and truck turnaround time. The size and
arrangement of the terminal can influence the turnaround time of trucks entering and
exiting while taking into consideration the free flow and safety of workers. The size and
arrangement of the terminal must provide for easy and safe maneuvering of truck and
terminal equipment. Truck turnaround time, according to Yoon (2007), is the time it takes
a truck to complete a transaction — picking up an import container or dropping a container
off. There are four activities that affect trucks’ turnaround time at the terminal: inbound
process, yard crane activities, inner transportation vehicle process, and outbound process.
These activities will only be performed efficiently if the structural arrangement and size
of the terminal fit the activities.

Container-handling equipment and facilities available

Available equipment and facilities for container handling play a vital role in determining
the efficiency of terminal activities. The major equipment in a terminal are cranes of
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different types and capacity. To improve truck turnaround time, Huynh and Walton
(2005) examined a measure of increasing yard cranes. They developed methods to help
terminal operators evaluate and apply this measure in making decisions for crane
purchase and determining how many to purchase. They also studied the availability of
cranes versus truck turnaround time. Results indicate that having more road cranes
generally lowers truck turnaround time. Another container terminal factor that enhances
efficient operation is the size of the berth, which is always considered when adding more
equipment like wharf cranes to the existing set of equipment.

Security initiative of the terminal

One major security program at container terminals is the Container Security Initiative
(CSI) announced in 2002. The primary purpose of CSI is to protect the global trading
system and the trade lanes between CSI ports. The activities of the CSI in US ports are
performed by a team of officers deployed to work with their counterparts in the host
nation to target all containers that are potential threats (Container Security Initiative,
n.d.). The effectiveness of security checks at originating ports can greatly reduce the
turnaround time of trucks picking up containers at the terminal. Thus, it is important to
understand the security initiative operated by the terminal and the extent to which it may
delay the readiness of containers for pickup.

2.10 Estimated Time of Arrival (ETA)

ETA is the anticipated time when a vehicle, ship, aircraft, or cargo is expected to arrive at
a certain place. Knowledge of ETA is a crucial aspect of transportation as it promotes effective
operation planning and prevents unnecessary panic about location of cargo.

2.10.1 ETA Relevance to Stakeholders in a Multimodal System

Stakeholders in a multimodal system have different uses for a vessel’s ETA. From the
moment one decides to transport containers from the origin until it gets delivered at the
destination, stakeholders are interested in the arrival time of the vessel. The benefits and
applications of this information as it concerns individual stakeholders are highlighted.

Carriers

Carriers are most concerned with meeting the deadlines set for transportation of cargo to
the destination. In a bid to avoid paying penalties on late deliveries, shippers provide a
feasible arrival time to shippers. The carrier considers economical speed of travel that
will minimize fuel consumption. Hence, ETA information is valuable to carriers as it
assists them to know whether they are on track with meeting their deadline with the
shipper. This also helps carriers make decisions about speed during the trip. If they are
behind schedule, they can increase the speed to meet the planned time; if they are ahead
of schedule, they may choose to slow down in order to save fuel.
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Container terminal

The competitiveness of a container terminal is a product of its efficiency in container
handling and its preparedness for arriving vessels. Knowledge of a vessel’s arrival time at
the terminal helps ports to plan ahead; it assists in allocation of berthing, equipment and
personnel. When accurate ETA data is available, terminal operations can be planned in
such a way as to prevent congestion as plans can be made for subsequent arriving vessels
to promote smooth operations at the terminal. Personnel shifts can be properly planned
and in an event that extra hands will be needed at the terminal, the operations manager
can plan for a shift change or double-shift as needed.

Importers

Importers are also the most concerned about their cargo’s arrival. The vessel’s arrival
time determines the kind of commitment they have with their customers. When an ETA
is accurate, it increases the customers’ confidence in their reliability.

2.10.2 ETA Determination

Fast and accurate calculation of ETA is of great importance in several areas of the ocean
shipping industry. Different techniques have been used to determine ETA. There is a general
concept which is applicable to all modes of transportation — air, water or road. It revolves
around calculating the distance between the cargo and its destination; afterwards, the ETA of
that vessel can be estimated by dividing the distance by the sailing speed (Fagerholt, 2000).

ETA can also be determined by referring to historical data for that particular itinerary. When
data of a trip from point A to point B are collected, one can predict the time required for the
same type of trip involving the same points in subsequent trips. Most journeys traveled by
vessels feature a series of stops. If one assumes a trip from point A to point C via point B,
then the time spent on this journey could be split into time spent from point A to point B and
from point B to point C. The time spent at point B should also be noted in this determination.
Distances between these points can be based on historical data by following ship locations
throughout the distance it covers and saving this data at a number of set points together with
the time spent at each point. A proper estimate can be made in the future since data for the
same trip is available. By repeating this process, one can build a database that will be referred
to as “HistoricalLeg.” As time passes, this database grows, allowing one to base estimates on
more historical data, thereby providing more accurate estimations (Parolas, 2016).

Heywood et al. (2009) present the standard method for determining ETA and recommend an
easier way by analyzing a particular route’s historical shipment data and segmenting each
trip into legs. Each historical leg thus represents one trip from the point at which location
data were received to the next transfer point. Over time, the table grows until the commonly
traveled path from a given point A to point B is littered with start points for historical leg
rows. This method provides more accurate ETA than simply using initial and terminal points.
To further increase the reliability of the calculation, legs with similar start- and endpoints
(within a critical radius of the actual leg’s start- and/or endpoints) are also used.
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When requesting the ETA of in-transit cargo traveling currently at point P between points A
and B, the general concept of this recommendation is that the algorithm will query the
historical leg table for a similar point P with the same destination B. The system will then use
the mean of the elapsed time for each row to calculate the estimated time from the current
location to B. The general equation for determining ETA by this method is as follows:

ETA = tpg + tgz + Leransfer (1)

derived from

tpz =tpc T tept.... T tyz (2)
teransfer = tp Hlct .. +tz 3)
Z;; ti
tpp = n1 4)
where

tp, = time to move from b to z
tiransfer = time spent at each port
tpp = time required to reach first port, considering the historic legs

One limitation of this technique is that some segments of the path traveled will yield poor
GPS data, due to sparse availability of data in that location. These legs with little location
data will lead to errors in ETA calculations. The introduction of a sensitivity radius (see Fig.
2.7a) around the current location of cargo can be the solution. The sensitivity radius was
decided using the formula below.
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2.7b

Figure 2.7: Sensitivity Radius for Points (Locations of Cargo) and Transfer Points

Another limitation of this technique is the unpredictability of the time spent at transfer points.
This was corrected by introducing an arrival circle of radius  and a departure circle of radius
2r, as shown in Figure 2.7b. The cargo is considered to have arrived at the transfer point
when the inner sensitivity circle is breached, and the cargo is considered to have departed
from the transfer point when it leaves the outer circle.

Veldhuis (2015) highlighted steps for developing an automated solution for ETA definition
of long-distance shipping. In his work, he created an automated version of the existing
process by analyzing the existing way of determining vessels’ ETA which basically entailed
the collection of shipping schedules and verification of departure times. Based on the
departure time, ETA data is collected from websites (marintraffic.com, apmtrotterdam.nl)
and updated in the system. Heywood et al. (2009) reinforced the importance of providing an
accurate estimated time of departure (ETD) in order to achieve the best results in ETA
determination.
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The automation process for data collection is known as “Web scraping,” where computer
software and programs are used to collect information from the Internet such as Cloudscrape,
RapidMiner and WebHarvest. Veldhuis also achieved some predictive results by using
historical data to model a ship’s route and splitting the route into parts between various ports.
ETA was determined by the time needed to cover the distance between ports and the time
spent at these ports. By combining these two methods, more reliable results were achieved.

2.11 Automatic Identification System (AIS) Data as a Tool for ETA
Determination

Technology has steadily found its way into operations of different industries and
institutions, and multimodal transportation is no exception. The future of multimodal
transportation systems lies in the application of new technologies. It is a known fact that
technology (information and communication) is the nervous system of multimodal
transportation. It comes with many benefits like providing real-time information (visibility and
data exchange) about shipments, and gives transporting organizations flexibility when reacting to
unforeseen changes (Harris et al., 2015). In marine transportation, AIS is the one of the most
impressive technologies that has helped provide real-time information about vessels in transit.
The most important part of this system is its collection, transmitting, interpretation and
implementation of data. The availability of this data, if properly implemented, is expected to
improve the safety and effectiveness of multimodal transportation.

AIS is an automated and standalone system that has the ability to exchange navigational
information between vessels and shore stations equipped with compatible systems that can
understand its messages. A basic benefit of AIS is that ship-to-ship and ship-to-shore
communication enhances vessel traffic services, monitoring and safety. AIS serves as a
broadcasting system onboard the ship. Operating like a radar transponder in the VHF maritime
band, it uses VHF broadcast technology to send vessel movement data. The system is capable of
handling over 4,500 reports per minute, which are updated as often as every two seconds. At the
basic level, any AIS system requires two inputs and one output in order to function effectively.
One of the inputs is the GPS feed, which is responsible for position identification, and the second
is the VHS feed, which receives incoming AIS signals from other vessels. The output is also a
VHF connection, which is necessary for transmitting the position and core information of the
vessel. When satellites are used to detect AIS signatures, the term ‘satellite-AIS’ (S-AIS) is used.

The most important part of AIS is the transponder, which serves as the receiver and
transmitter of feeds. There are three types of AIS transponder: (a) class A, (b) class B, and (c)
“receive only.” The question of which transponder to install is based on the type of vessel and
type of information to be transmitted and received. Class A is the higher specification of
transponders and is mandated for commercial vessels, while class B is the lower classification,
and receiver-only transponders are for smaller, mostly leisure, vessels.

Class A

Under international Safety of Life at Sea (SOLAS) regulations, class A transponders are
mandated on all international ships with a gross tonnage of 300 tons or more, and on all
passenger ships regardless of size. Class A units must have the ability to send the ship’s
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information to other ships and to shore. They must also be able to receive and process
information from other sources, including other ships. These transponders have a horizontal
range of up to 40 nm and transmit continuously at 12.5 watts. The transponder uses Self-
Organized Time Division Multiple-Access (SOTDMA) technology so that each transmission
is automatically adjusted to avoid interfering with others in range. In areas with high-density
shipping, the system also shrinks the area of coverage when necessary to ensure that the
system is not overloaded.

Class B

Class B transponders were developed to provide smaller vessels (usually recreational vessels
and small fishing boats) with voluntary access to the AIS system benefits enjoyed by the
larger vessels. These transponders' horizontal range is around 7 nm, and they transmit every
30 seconds at 2 watts. They use Carrier Sense Time Division Multiple Access (CSTDMA)
technology, which checks for Class A transmissions before sending its own signal. Class B
information is only broadcast when there is sufficient space on the AIS channel.

Receive-only

The third option for a small vessel is to just receive AIS transmissions from other vessels and
display them. This was initially used by small vessels before Class B transponders entered
the market and came to be favored over the receive-only transponder. Having a receive-only
transponder means that you can see other vessels but they cannot see you.

Two channels — 87 B (161.975 MHz) and 88 B (162.025 MHz) — in the marine VHF
allocation are reserved primarily for AIS transmission. Like the normal VHF, the range depends
on antenna height although the AIS signal is more rugged, and hence has longer range. It can
typically pick up transmission from a large ship up to 20 miles away. To accommodate many
vessels transmitting on the limited channels, a Self- Organizing Time Division Multiple Access
(SOTDMA) system is used. This works through a principle where a time period is divided into
about 4,500 slots. When a Class A or B transponder switches on, the system looks for a vacant
time slot and reserves it. Once this slot is filled, other sets in range will avoid it and select
another vacant slot. Precise timing is needed to ensure that all vessels are synchronized, and this
is derived from a GPS receiver that is present in both class A and B equipment. It is important to
delve into the exact type of information that each class of AIS transponders provides. We should
also keep in mind that only class A and B transponders transmit information, while class B
transponders transmit only static information about the vessel. Class A transponders provide
three types of information: static, dynamic, and voyage-related.

Static information

This information is entered into the AIS system upon installation. It only changes if there is a
major change in the ship’s characteristics, such as name or ship type. The static information
is verified periodically. Such information includes: 1) Maritime Mobile Service Identity
(MMSI); 2) call sign and name of vessel; 3) IMO number; 4) length and beam; 5) type of
ship; and 6) location of position-fixing antenna.
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Dynamic information

Apart from navigational status information, dynamic information is automatically updated by
the ship sensors connected to the AIS. They broadcast every few seconds. For proper and
accurate operation of AIS, it is important to properly install and confirm operation of
connected sensors. Dynamic information includes 1) ship’s position; 2) position time stamp
in Coordinated Universal Time (UTC); 3) course over ground (COG); 4) speed over ground
(SOG); 5) heading; 6) navigational status; and 7) rate of turn (ROT).

Voyage-related information

This information is manually entered and updated based on trip conditions. Voyage-related
information includes 1) ship’s draught; 2) hazardous cargo (type); 3) destination and ETA;
and 4) route plan.

It is important that the navigation status of vessels underway be updated throughout the
course of a voyage as the system broadcasts every 2-10 seconds. When vessels are moored or at
anchor, they broadcast every 3 minutes. Due to the frequency of broadcast, voyage-related
information uses up a significant amount of bandwidth, which may affect the response time
when first responders require such information. Sometimes collecting information at coast
stations is impossible when the vessels are out of the coastal AIS range. It is now possible to
receive AIS information through the use of satellite which has the capacity to receive AIS data
from out-of-range vessels, transmit it to off-shore stations, and even make it available globally
through the Internet. Figure 9 shows how AIS messages and other relevant messages (GPS and
satellite data) are exchanged within the system. Several providers (companies) offer the
information thereof, which can be accessed normally through subscription and received by fleet
operators.
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Figure 2.8: Data Transfer in AIS
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There are a number of websites and Internet applications that permit stakeholders to view
vessels’ AIS data, such as PortVision (www.portvision.com) and Marine Traffic
(www.marinetraffic.com). These work by taking data from numerous receiving points around the
coast and aggregating it to create an overall picture. There are also some applications that will
transmit AIS data from a tablet or smart phone, such as
(http://www.marinetraffic.com/en/p/mais). Provided that Internet connectivity is available, the
vessel's positions will start getting reported once the mobile AIS application is activated on the
mobile device. It is important to note that they are not transmitting on VHF but sending data
directly to the Internet over the phone data system. This means that the information will not
show up on a normal VHF AIS receiver on nearby vessels but only on the website associated
with that mobile application (29, 30).

2.11.1 AIS Data Description

Data collected from AIS each have their own relevance, especially for different applications.
Relevance of some of the information collected from AIS data are highlighted below.

IMO number: The International Maritime Organization (IMO) number is a unique
identification for vessels and registered owners/companies. This number was introduced to
improve safety and security for vessels. It is linked to a vessel for its useful life, regardless of
any change of name or ownership. This number is relevant for unique identification of a
vessel, especially in tracking its time of arrival.

Call sign: A call sign is allocated to a vessel when first issued a ship radio license. It
uniquely identifies vessels within the International Maritime Mobile Service. Call signs are
used solely for search-and-rescue purposes. When there is a change in vessel ownership, call
signs may be kept with the vessel or the new owner will be directed to obtain a new call sign.

Maritime Mobile Service Identity (MMSI): A MMSI is a unique nine-digit number
associated with VHF installations that serves as a vessel’s digital “call sign.” They are sent
over a radio frequency channel to identify stations. It can be used by telephone or telex
subscribers connected to the general telecommunications network to call ships.

Length and beam: These are basic characteristics for describing a vessel’s size. They
determine how long and wide a vessel is and provide information on the vessel’s capacity.
This information is important when describing a vessel’s maneuverability and its ability to
sail and turn through ship channels.

Type of ship: This data provides information on the vessel’s function. Vessel types include
cargo, tanker, and passenger vessels. This information can be used to filter and identify
vessels of interest.

Ship’s position: The position of vessels, presented in latitude and longitude, shows a specific
set of numbers that represents the vessel’s specific location. Latitude and longitude are a
common choice of coordinate system and are relevant in determining vessels” ETA because
knowledge of the current location and destination has a great impact on such determination.
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Position time stamp: Just as location is an important factor, so is the time at which the
location is identified. This serves as a benchmark for determining the time of arrival.

Heading: This is the compass direction in which the vessel is pointed. This information is
useful in determining time of arrival because it specifies the vessel’s direction of travel and
nearness to its destination.

Course over ground (COG): This is the actual direction of final destination between two
points, with respect to the surface of the earth. Heading may differ from course, due to route
taken or the effects of wind and current. The COG is relevant in determining time of arrival
as it provides information about direction towards destination.

Speed over ground (SOG): This is the speed of the vessel relative to the earth’s surface. It
identifies how much distance is covered by the vessel in a given period. This factor is
important for determining time of arrival as the greater the SOG, the more the distance
covered at a given time and lesser time of arrival, provided other factors are unchanged

Ship’s draught: This is the vertical distance between the waterline and the bottom of the
hull. It determines the minimum depth of water a ship can safely navigate. It is also used to
determine the weight of cargo carried by the vessel.

2.11.2 PortVision as a Source of AIS Data

One of the well-known providers of AIS data is PortVision by Oceaneering International,
Inc. PortVision is a Web-based service that provides real-time and historical transit data of
maritime vessel operations in ports, inland waterways and oceans. PortVision also supports
location reporting for vessels at sea through satellite-based tracking. First deployed in early
2007, PortVision has facilitated a compelling increase in efficiency, cost savings, and safety
and security of waterways. PortVision has also provided visibility and transparency of all
vessel activities to all stakeholders; a noticeable change in waterway culture.

With PortVision, users can leverage AIS transmissions to support their businesses and
experience more efficient business practices. PortVision records these transmissions at
certain intervals then uses the data to locate vessels and determine vessel movements and
tracks. It is now possible to deploy an information system that provides real-time vessel
locations and recorded vessel movements for all commercial ship traffic along the waterway.
PortVision currently provides service for major seaports in the US and North America and
over 60 international ports, including Africa, Asia, Europe and South America. Figure 10
shows a typical display of the PortVision home page with numbers representing the counts of
AlS-supported vessels in each location.
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Adopted from www.portvision.com

Figure 2.9: PortVision Display Page

PortVision offers a range of maritime services that includes access to relevant information on
vessel movements, terminal/port arrival and departure, and creating and monitoring key
points of interests on the portal. Ability to set up notifications of arrival and departure of
vessels in zones of interest through e-mails and mobile text messages is a good functionality
of the system. Another interesting feature is the provision of animated playback and
historical reporting, which allows users to analyze past events and generate documentation
suitable for demurrage analysis, vendor and partner compliance, negotiation and litigation,
etc. It provides a platform where agents, ship owners, and terminal personnel can collaborate
to more effectively schedule dock resources. The platform can also be used for document
exchange between agents and terminal personnel. Through this, dock scheduling information
1s made visible to other stakeholders to drive efficiency, while strictly maintaining
confidentiality within the system. Most importantly, all information can be accessed from
anywhere through a standard Web browser.

2.11.3 ETA Forecasting Tools

One of the crucial factors to consider when deciding which mode of transportation to employ
is the reliability and acceptable time of arrival that the system can provide. With this in mind,
it becomes necessary to be well informed about the ETA of any means of transportation to be
considered. As the word “estimated” implies, it is a rough calculation of the value, number,
quantity, or extent of something. The ETA of any mode of transportation does not provide an
exact time of arrival; there is room for error. The main purpose of performing research in this
area is to limit the degree of error and uncertainty in the estimation.
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Many research efforts have been made to determine and optimize the ETA of different modes
of transportation. The different methods developed, regardless of the mode of transportation
considered, can be applied to other modes of transportation because all modes share a
common ground in terms of the distance traveled and the speed of travel. These efforts have
resulted in the application of three different models that can be applied when determining
ETA: (a) models based on historical data, (b) multi-linear regression models, and (¢) machine
learning. The first type infers the current and future travel times of a means of transportation
based on historical travel times for the same itinerary. In general, this model is reliable only
when the traffic pattern in the area of interest is relatively stable. One major limitation of
historical data models is that they require an extensive data set, which may not be available
in practice, especially when the traffic pattern varies significantly over time. The second type
is a mathematical model that predicts expected travel times between stops and then the ETA
at individual stops. This type of model is usually established by regressing travel times
against a set of independent variables. This approach has limitations in that it is only reliable
when a regression equation for the operation can be established, which may not be possible
for application environments where many of the system variables are not correlated. The
third approach is the application of a machine learning technique to predict ETA. This
technique is capable of capturing the complex nonlinear relationships that are typically seen
in transportation application environments.

2.12 Machine Learning

Machine learning generally falls into three categories: (1) supervised learning, (2)
unsupervised learning, and (3) reinforcement learning (Chao, 2011).

2.12.1 Unsupervised Learning

Unsupervised learning is the most common learning process in the brain, which makes it
very important. According to Dayan (2008), this process studies how systems can learn to
represent particular input patterns in a way that reflects the statistical structure of the overall
collection of input patterns. In unsupervised learning, target outputs or environmental
evaluations are not associated with each input. The system uses prior biases to determine
what aspects of the structure of the input should be captured in the output.

2.12.2 Reinforcement Learning

According to Sutton and Barto (2017), reinforced learning is a kind of learning that discovers
which action will yield the greatest reward. It is basically characterized by trial-and-error
searching. The computer is simply given a goal to achieve, and — through the trial and error
of interacting with its environment — learns how to achieve that goal. Harmon and Harmon
(2001) explain reinforcement learning as an approach to machine intelligence that combines
two disciplines to solve problems that neither discipline can address on their own. It is an
appealing approach for researchers due to its generalizability.

2.12.3 Supervised Learning
Supervised learning is the most important methodology in machine learning and is central to

the processing of non-linear data. According to Cunningham et al. (2011), supervised
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learning generally entails mapping a set of input variables X and an output variable Y and
applying this mapping to predict the outputs for future data.

Of these categories of machine learning, supervised learning has been used by researchers for
predicting ETA. It has leveraged the availability of historical trip data where there is
information of input variables and the actual time of arrival. When applied to real-world
problems, it follows the steps described in Figure 2.9.

Identification
of required
data

'

Data pre-processing

Y

Y

Definition of
training set

Algorithm
selection

Parameter tuning

Training

Evaluation
with test set

No Yes
OK? »| Classifier

Adopted from Kotsiantis (2007)
Figure 2.10: Process of Supervised Machine Learning

As explained above, supervised learning is the most important method of machine learning.
Delving into a few of the algorithms that operate in this way will provide a better
understanding of the method. Kotsiantis (2007) stated that amongst supervised learning
algorithms, the multilayered perceptron also known as Artificial Neural Network (ANN) and
Support Vector Machines (SVMs) tend to perform much better when dealing with multi-
dimensions and continuous features. Some of the characteristics shared by ANN and SVMs
that make them unique are as follows:

e Large sample size is required to optimize their prediction accuracy;

e They perform better when multicollinearity is present and a nonlinear relationship
exists between input and output;

e They require more training time as they learn more slowly than other supervised
learning algorithms;

e Memory space for execution is usually smaller than the training space;
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e They have more parameters than other techniques; and
e They have poor interpretability, which makes their principle of operation hard to
understand.

Neural Network

Khajanchi (2003) defined a Neural Network (NN) as an information-processing
technique developed from the concept of biological nervous systems. Unlike traditional
statistical methods, a neural network has the ability to model non-linear problems and
perform predictive analysis where relationships are not constant. Neural networks can
identify complex trends that are difficult or impossible for humans or other computer
techniques to detect. Neural networks derive their strength from their ability to recognize
the relationship between input and output data. Some special functionalities of neural
networks are adaptive learning, self-organization, and real-time operation fault tolerance
via redundant information coding. One of the most important strengths of neural network
models is their ability to learn from series of iteration input data and the resulting outputs.
Understanding their architecture sheds more light on the concept. Their three-layered
architecture (Fig. 2.10) consists of an input layer, a hidden layer and an output layer.
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Figure 2.11: Architecture of a Three-layered Neural Network

Variables A-F are input neurons representing input variables. Variables G-L are neurons
in the hidden layers which capture relationships between the input and output layers.
Variable M is the output neuron representing the model output.

Stergiou and Siganos (1996) categorized the learning process and response of the
network into associative mapping and regularity detection. In associative mapping, when
there is any addition or distortion to the existing input, the network learns to produce a
new pattern in response. In regularity detection, the network response is based on
particular properties of the input pattern. A neural network can be a fixed or an adaptive
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network. When the learning method used for an adaptive network is supervised, the
output unit is told by an external teacher how to respond to the input signal. This
minimizes any error between the desired output and the computed value.

ANN models require extensive training to reduce error in the results (Sun et al. 2007). It
was also discovered that the neural network method performed better than other machine
learning techniques. USDOT.BOS (2015) showed that neural networks performed better
than linear regression models for predicting purposes. Calculating the time of arrival of
different modes of transportation is a non-linear process, and major irregularities are
present. Therefore, the neural network’s flexibility, non-linearity and arbitrary function
make it preferred over linear regression models. Jeong (2004) also developed a
historically based model, regression models, and artificial neural network (ANN) model
to predict bus arrival time of Automatic Vehicle Location (AVL) systems. It was found
that the ANN models outperformed both historical data-based models and multi-linear
regression models. It was hypothesized that the ANN achieves an advantage over other
models through its ability to identify the complex non-linear relationships between travel
time and the independent variables. Carbonneau et al. (2008) applied machine learning
techniques to supply chain demand forecasting. He compared machine learning
techniques (neural network, recurrent neural network and support vector machine) and
traditional methods (naive forecasting, trend, moving average, multiple linear regression,
and time series). The analysis showed that machine learning techniques, especially the
neural network, performed better than other techniques.

2.13 Variable Importance

Variable importance represents the statistical significance of each variable present in the
data with respect to its effect on the model generated; it quantifies which input variables are
more influential than others. Variable importance is the predictor ranking of each variable based
on its contribution to the model. Identifying variable importance helps data analysts to eliminate
any variables that are contributing little or nothing to the model but increase prediction
processing time. Commonly used methodologies for quantifying variable contributions in ANNs
include the connection weight approach (Olden’s algorithm), Garson's algorithm, partial
derivatives, input perturbation, sensitivity analysis, forward stepwise addition, backward
stepwise elimination, and improvised stepwise selection. The most popular methods for
constructing variable importance are Garson’s algorithm (Garson 1991) and Olden’s algorithm.

2.13.1 Garson’s Algorithm

Garson’s algorithm is used to determine variable importance by calculating the weighted
connections between nodes of interest. Garson’s approach partitions hidden-output
connection weights into components associated with each input neuron using absolute values
of connection weights.

Figure 2.12 shows a typical neural network with one input layer, one hidden layer, and an
output layer. W;; indicates the connection weight of the input-hidden layer. W,; also
represents the connection weight between the hidden layer and the output layer.
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Figure 2.12: Typical Neural Network with Input-hidden and Hidden-output Weights
Garson’s algorithm is represented by the steps in Tables 2.6-2.9. These steps show the
approach employed in quantifying the importance of variables involved in developing the

neural network model in Figure 2.12.

Table 2.6: Model’s Input-hidden and Hidden-output Weights

Hidden 1 | Hidden 2 ...Hidden n
Input 1 W1,1 W2,1 Wn,l
Input 2 W1,2 Wz,z Wn,z
Input 3 W1,3 W2,3 Wn,3
...Input n W W, W
Output Wo 1 W0,2 Wo,n

Contribution of each input neuron to output (Ci;) = W;; * W,;

Table 2.7: Contribution of Each Input Neuron to Output Neuron

Hidden 1 | Hidden 2 ...Hidden n
Input 1 C] 1 Cz 1 Cn,l
Input 2 C1,2 Cz,z Cn,z
Input 3 Cis Cas (%
...Input n Cin Con Chn

Relative contribution of each input neuron to output (R;;)= Ci; /2 Ci;

27



Table 2.8: Relative Contribution of Each Input Neuron to Qutput Neuron

Hidden 1 | Hidden 2 | ...Hiddenn | Sum
Input 1 R1,1 RZ,I Rn,l S,
Input 2 RI,Z Rz,z n.2 S,
Input 3 R, Ro; R; S,
...Input n R, R, R S,

Relative importance (R;) = (Sy/2 S;)*100

Table 2.9: Garson’s Relative Importance of Input Variables to Model

Importance
Input 1 R;
Input 2 R,
Input 3 R3
...Input n Ry

2.13.2 Olden’s Algorithm

Olden's algorithm calculates the product of the raw input-hidden and hidden-output
connection weights between each input neuron and output neuron and sums the products
across all hidden neurons. Similar to Garson’s algorithm, Tables 2.10-2.13 highlight the steps
followed using Olden’s algorithm to quantify the variable importance of the neural network
model in Figure 2.12.

Table 2.10: Model’s Input-hidden and Hidden-output Weights

Hidden 1 | Hidden2 | ...Hidden n
Input 1 W1,1 W2,1 Wn,l
Input 2 W1,2 Wz,z Wn,z
Input 3 W1,3 W2,3 Wn,3
...Input n Wi, W, W
Output Wo 1 W0,2 Wo,n

Contribution of each input neuron to output (C;; )= W;;* W,;

Table 2.11: Contribution of Each Input Neuron to Output

Hidden 1 | Hidden 2 | ...Hidden n
Input 1 C1’1 C2’1 Cn,l
Input 2 C] 2 C2 2 Cn 2
Input 3 C1’3 C2’3 Cn,3
.o .Input n Cl,n Cz’n Cn,n

Connecting weight importance of each input variable (CWj) =2 C;
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Table 2.12: Connecting Weight Importance of Each Input Variable

Importance
Input 1 CW;
Input 2 CW,
Input 3 CW;
...Input n CW,

Relative importance (R) = (CW;/2. CW;)*100

Table 2.13: Olden’s Relative Importance of Input Variables to Model

Importance
Input 1 R,
Input 2 R,
Input 3 R;
...Input n R,

According to Greenwell et al. (2018), Olden’s algorithm has outperformed Garson’s method
in various simulations. Olden et al. (2004) also found that Olden’s algorithm outperformed
all other approaches and provided the best result by accurately quantifying variable
importance.

2.14 Optimization of ETA from AIS Data

This section reviews different applications of machine learning to determine either ETA
or delays of vessels to ports and terminals. Pani et al. (2015) employed a regression approach in
machine learning by using logistic regression, classification tree and random forest to predict the
delay or early arrival of vessels. AIS and weather data were used as inputs. This method was
used as it can be explained and interpreted more intuitively. The authors employed algorithms
provided a qualitative estimate of the delay/advance by knowing whether or not an incoming
vessel was likely to arrive before or after the scheduled ETA. Random forest outperformed the
other algorithm.

Fancello et al. (2010) predicted the ETA of vessels to optimize container handling at
Cagliari’s container terminal by examining the calibration of a neural-network-based simulation
model. Neural network was developed with different numbers of variables selected based on
previous knowledge from previous works. In order to identify the best fit for the system,
numerous network-varying characteristics were tested for, which included trying out different
learning algorithms, learning parameters (e.g., learning cycles, learning rate), and numbers of
hidden nodes. The analysis found that three variables with two hidden layers having 4 nodes and
1 output layer gave the best results with the least error in the predicted time of arrival.

Pani et al. (2014) used a data-mining approach to predict the level of daily alarm related to late
arrivals. They categorized the delay level into clusters and, using the Ward’s method, identified
the best cluster to use to analyze the delay rankings as variables. Three different machine
learning models (naive Bayes, decision trees, and random forests) were used to predict the delay
alarm level for each day and tested. Predictive power of the algorithms was determined by

29



comparing the predicted and observed levels of delay. The best results were obtained with the
random forest algorithm, which yielded a relatively low absolute error.

Parolas (2016) predicted vessels’ ETA at the port of Rotterdam using a neural network and
support vector machine. The effect of weather conditions was also analyzed. The following
variables were used as inputs with 10 hidden layers and one output layer as ETA.

AIS Data: latitude (degrees), longitude (degrees), distance to be covered (km/h), current
speed of vessel (km/h), change in speed over last 3 hours (km/h), average speed over last 12
hours (km/h), time used for calculating average speed (hours), length of ship (meters),
breadth of ship (meters), and ETA of ship’s agent (number of days).

Weather Data: current U-component (m/s), current V-component (m/s), wind U-component
(m/s), wind V-component (m/s), peak wave period (s), peak wave direction (degrees), and
significant wave height (m). Results obtained from the prediction models were compared to
the vessel’s actual time of arrival. Mean absolute error (MAE) and root mean squared error
(RMSE) methods were used to evaluate the model performance of the two machine learning
methods. Results showed that both the SVMs and NN gave more accurate predictions than
the current situation based on the ETA provided by the shipping agent. Furthermore, SVM
outperformed the NN for every point in the examined time-horizon. In regard to the influence
of weather on the ETA, it was found that it does not play a crucial role in estimating ETA for
the examined route.

2.15 Port of Houston

The Port of Houston is a major port with over 150 public and private facilities. The
complex is about 25 miles long and very important due to its large tonnage-handling capacity
and economic impact. In international waterborne tonnage handled, the Port of Houston is
ranked first in the United States. Also, it is ranked second and fifth in terms of total cargo
tonnage handled and busiest port in the world, respectively (Qu, 2012). Efficiency of any port
depends on the availability of adequate dockside infrastructures such as berth space, cranes,
wharfs, and channel depth. The quality and quantity of such infrastructure goes a long way in
determining the reliability of the service provided or to be expected by the terminals. The
Maritime Administration (MARAD) highlighted some factors that influence the quality of
service provided by ports when making a choice of port of call.

Navigability: For a port to attract the largest (Neopanamax) vessels, it needs a channel deep and
wide enough for effective navigation. MARAD recommends channels 47.6 to 50 feet deep.

Air draft restrictions: Some container vessels carry large stacks of containers well above water.
Bridges over the channels must be high enough to accommodate such vessels.

Terminal capacity: For timely handling of large container vessels, it is necessary for the port to
have adequate yard size, labor, cranes and other terminal equipment.

Landside connectivity: Ports and container terminals are associated with huge amounts of truck
traffic. Therefore, transfer facilities and entrance/exit routes must be properly designed. The
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reliability of port and off-port facilities greatly depends on their ability to move shipments in and
out of the port and through metropolitan areas, which greatly impacts the port’s attractiveness.

These characteristics of the Port of Houston have factored largely in its competitiveness.
This study’s profile of the Port of Houston focuses on the container operations at its Barbours
Cut and Bayport container terminals, which together handled more than 2 million TEUs in recent
years. These container terminals have handled approximately 67% of container traffic for the
Gulf Coast and 95% of all container traffic for ports in Texas (Payson et al. 2017).

2.15.1 Bayport Container Terminal

Bayport Container Terminal is recognized as the most modern and environmentally sensitive
container terminal in the US with a capacity to handle 2.3 million TEUs annually. Its
electronic data exchange capability and computerized inventory makes it efficient in tracking
the status and location of individual containers (Bayport Container Terminal). Around 2,500
transactions are conducted daily. This includes receiving of import containerized shipments,
delivery of export containerized shipments, receiving and delivery of empty containers, and
receiving and delivery of chassis. About 65% of trucks visiting Bayport perform dual
transactions in each visit (Bierling et al., 2015).

2.15.2 Barbours Cut Container Terminal

Completed in 1977, Barbours Cut Container Terminal has grown to become a leading
container-handling facility in the US Gulf of Mexico. Located at the mouth of Galveston
Bay, it is comprised of six berths, roll-on/roll-off platforms, a lash dock and 230 acres of
paved marshaling area. With a current capacity for 1.2 million TEUs, the terminal is
expected to increase its capacity to 2 million TEUs by the end of the ongoing modernization
program (Barbours Cut Container Terminal). A summary of the characteristics of both
container terminals is presented in Table 2.14.
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Table 2.14: Characteristics of Bayport and Barbours Cut Container Terminals

Barbours Cut Terminal

Bayport Terminal

. 6 docks 3 docks
Berthing Docks 6,000-ft berths 3.300-ft berths
Equipment 13 wharf cranes 9 wharf cranes
42 RTG yard cranes 39 RTG yard cranes
190 acres of loaded container 165 acres of loaded container
storage storage
390 acres of total terminal 230 acres of total terminal
Capacity acreage acreage
1.4 million TEUs annual 1.2 million TEUs annual
throughput throughput
36,00 TUEs static capacity 32,000 TUEs static capacity
Access to all major highways Access to all major highways
Access to two major rail lines
Terminal gates operating from | Terminal gates operating from
Accessibility 7 am to 7 pm weekdays 7 am to 11 pm weekdays
Automated gate system with Automated gate system with
14 inbound and 12 outbound 28 inbound and 12 outbound
lanes lanes
Ship arrival rate (47) 2.10 per day 1.53 per day
Triangular distribution with Triangular distribution with
Ship stay duration (47) minimum of 3.71 hours minimum of 8.92 hours
Average of 28.2 hours Average of 22.54 hours
Maximum of 222.42 hours Maximum of 105.33 hours

The first arrival station for container vessels designated for either the Bayport or
Barbours Cut container terminals is the Galveston sea buoy. At this stage, the vessels are handed
over to operators of Port of Houston who navigate the vessel to its designated container terminal.
Such vessels experience wait time at the buoy before and after arrival of the allotted operators.

2.16 Port of Houston Operations

The Port of Houston operations for container vessels are categorized into activities at the
sea buoy and activities at the container terminal. These activities are managed by the joint
operations between Houston pilots, the US Coast Guard, US Customs and Border Protection, and

the Port Authority.

2.16.1 Buoy Operations

As stated previously, every vessel entering the Houston Ship Channel is required to stop at the
Galveston buoy, where a pilot takes over the sailing to the terminals. Pilots are available 24/7
and the buoy services up to 60 vessels daily. Although congestion at the buoy is unlikely,
unforeseen circumstances like oil spillage and fog may cause congestion and backlog of
vessels to be serviced. Information on vessels’ arrival time to the buoy is provided to pilots by
the shipping agent prior to the vessel’s arrival. With this information, a pilot is made available
to sail the vessel into the port. Operations at the buoy are sometimes influenced by other
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activities, like dredging. Beam restriction of the ship channel size makes it impossible for
inbound and outbound vessels to meet in the ship channel when one of the vessels has a length
greater than 1,000 ft or width greater than 138 ft. Such vessels are also restricted to daylight
sailing even if they arrive at the buoy at night. Apart from delays experienced due to the
presence of a big vessel, weather conditions and daytime restriction, there is a permissible
delay of not more than an hour in situations where efforts are made to optimize manpower.
When a vessel arrives and the available pilot is on a return trip that will take more than an
hour to get back to the buoy, a new pilot is allocated to the arriving vessel. Low sailing speed
is recommended through the ship channel to reduce the wake generated by the vessel and
prevent damage to tugboats. Dredging is also a factor that can cause channel closure if piping
crosses the sailing path.

2.16.2 Terminal Operations

Discussion of the Port of Houston’s operations would be incomplete without exploring what
goes on at the terminal and its gate. This is important in order to identify the Port of
Houston’s potential for multimodal systems. Terminal activity is divided into berth
operations and gate operations.

Berth operations

Berth operations at the Port of Houston include basic activities performed by berth
operators. Berth operators allot a berth area to arriving vessels, load and unload
containers, and store containers. Operations here include basic transfer of containers from
ship to shore, which requires quay cranes and RTG yard cranes for transporting the
containers to the stacking area or transporting vehicles as needed.

Gate operations

Bayport and Barbours Cut Container Terminal have similar operational stages:
Stage 1 — Inbound Optical Character Recognition (OCR) and ticket generation
Stage 2 — Scaling and activity

Stage 3 — Outbound OCR and Customs and Border Protection (CBP) inspection
Stage 4 — Outbound

Optical Character Recognition (OCR): At this stage, images of the truck and container
are captured from different angles as well as the license plate, chassis number and
container number. These images can be accessed from the Port of Houston website by
simply inputting the container number. Drivers proceed through one of the 14 gates for
Barbour’s Cut Terminal (BCT) or 28 gates for Bayport Terminal, scan their tickets and
are processed based on their mission (drop-off, pickup, or both). After this pre-check,
which takes about 10-15 seconds, drivers proceed for Transportation Worker
Identification Credential (TWIC) verification then enter the terminal.

Scaling and activity: This stage is an automated process where the truck’s weight is
calculated. A pick-up or drop-off ticket is then generated. Inside the terminal, trucks drop
off and pick up containers, or both, depending on their mission. The trucks then approach
the outbound gates, passing through 4 CBP rpm (x-rays) for inspection.
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Outbound OCR and Customs and Border Protection (CBP) inspection: This stage is
composed of an outbound OCR system with 8 lanes at the BCT and 6 lanes at the
Bayport terminal. Cameras take images of exiting trucks. The OCR used here is
important for damage inspection and allows for automated transaction completion.

Outbound: At this stage, drivers scan their ticket to exit the terminal.

2.17 Summary

Preceding sections comprehensively review a multimodal transportation system, ways of
determining ETA, and the role played by accurate ETA in the system’s efficiency.
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Chapter 3. Solution Methodology

3.1 Introduction

To predict vessels’ time of arrival to port terminals, this study examined this mode of
transportation’s characteristics and facilities. Based on availability of data, existing techniques
and a literature review, the most efficient method was selected.

Machine learning is an algorithm that can learn from data without relying on rules-based
programming. Due to the complexity and irregularity observed in the collected data and the fact
that traditional statistical forecasting models have limitations in estimating the complexity of a
real system (Zhang et al., 1998; Kotsiantis 2007), it became necessary to opt for a neural
network. This selection was also reinforced by works in the literature like Fancello (2011) and
Parolas (2007) as well as these works’ results.

3.2 Steps for Method Execution

The structuring and execution of this approach involved the following steps: a) choice of
predictive approach; b) choice of paradigm; c) choice of input variables; d) variable
normalization; e) choice of network architecture; f) choice of number of hidden layers and nodes;
g) training, validation and testing of the network; h) second leg analysis; and i) interpretation of
results.

3.2.1 Choice of Predictive Approach

Neural network was used as a predictive approach that could be trained to recognize patterns
and relationships between independent input variables and the output (time of arrival).

3.2.2 Choice of Paradigm

The back-propagation algorithm in ANN was employed. It consists of multiple neuron layers,
each of which is fully connected to the next. Neurons in the input layer represent the input
data with all other neurons mapping the inputs to the output by a linear combination of
weight and bias. Its steps consist of 1) feeding forward the values, 2) calculating the error,
and 3) propagating it back to earlier layers.

3.2.3 Choice of Input Variables

Selection of input variables was achieved using prior knowledge from previous related
works, and the uniqueness of the port of study. Twelve input variables were chosen: voyage
ID, vessel’s International Maritime Organization (IMO) number, length of vessel, beam of
vessel, speed, average speed, heading, course, latitude, longitude, distance to buoy, and
distance to destination (terminal). The variables were selected due to their relevance to
determining ETA. All identified variables have different effects on ETA and possess their
own level of importance with regards to their impact on the predictive power of the network.
These variables were selected due to their relevance in determining time of arrival, as will be
explained in Section 3.3
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3.2.4 Variable Normalization

This step was accomplished after removing outliers from the records. To increase
consistency, and for easier data mapping, it was necessary to normalize the variables,
appropriately scaling them to the transfer function used. In this case, min-max normalization
was used to present the data in a [0,1] range.

3.2.5 Choice of Network Architecture

Database records were divided into training and testing sets at 80% and 20%, respectively.
Once the network was trained, testing for prediction accuracy was evaluated on the test set.

3.2.6 Choice of Number of Hidden Layers and Nodes

To prevent over- and under-fitting of the network, it was important to use the best number of
hidden layers and neurons.

3.2.7 Training, Validating and Testing of the Network

Training, validating, and testing of the network was conducted with the aid of R software and
the Neuralnet, a library that trained the neural networks using back-propagation. The
designed network was trained with the training dataset and then tested to confirm the
network’s ability to predict the output based on inputs from the testing dataset.

3.2.8 Second Leg Analysis

The study area has its uniqueness and thus requires a special approach for trips from the pilot
point (Sea buoy) to the respective terminals. With this in mind, steps a-g were repeated for
data relevant to this portion of the trip, and collected results were summarized. This section
aims to reduce any error that may have resulted from the analysis. This portion of the
vessel’s trip possesses different attributes because the trip is performed in a controlled
environment (ship channel) with many restrictions.

3.3 Data

As mentioned in Section 2, the variables in this analysis are available in AIS databases.
They include voyage ID, IMO, length of vessel, beam of vessel, speed, cumulative average
speed, heading, course, latitude, longitude, distance to buoy, distance to terminal, arrival time at
buoy, and berthing time. Each identified variable has its own effect on ETA and possesses its
own level of importance in regard to its impact on the network’s predictive power. All variables
are processed to useable datasets to allow the network map relationship between them and to
improve accuracy of results obtained.

Data used for this analysis were consolidated from the AIS and USCG databases. AIS
historical records for container vessels called to the Bayport and Barbours Cut Container
Terminals in the Port of Houston were collected. Information retrieved from the AIS records
include the static information of the vessel and data point information, such as length of vessel,
beam of vessel, current speed, heading, course, and location showing the latitude and longitude.
These records were tied to information collected from the USCG database, which provided the
information on the actual time of arrival of vessels to the pilot point at the Galveston sea buoy as
well as the actual berthing time of the vessel at the container terminal. Records from USCG were
preferred for the actual time of arrival and berth time because they portray real-life arrival times
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at the buoy and terminal. Times recorded in the USCG database were also compared with times
received from AIS data for the same vessel. Cumulative average speed, distance to buoy and
distance to terminal were used as variables in this analysis. They were calculated from the
collected AIS and USGC datasets.

In total, 237 trip records were randomly selected from 2016 to 2018. Collected data were
based on the difference between record stamp time and arrival time. Records were categorized
into timeframes that consider both medium and short time horizons. The medium time horizon
was identified as 5 days prior to the vessel’s arrival, and aims to assist planning activities for port
operators and other stakeholders. The short time horizon considers 24 hours prior to the vessel’s
arrival. The categories of collected data are summarized in Table 3.1.

Table 3.1: Summary of Data Used for Analysis

Category Duration of data Frequency | Data volume
1 5 days to arrival Hourly 14,473
2 1 day to arrival 5 minutes 17,855
3 Buoy to terminal 5 minutes 988

The different parameters are described below and categorized into input and output variables.

3.3.1 Input Variables
The input variables for this analysis are highlighted below.

Voyage ID

The voyage ID provides the uniqueness for each identified trip. This parameter is useful
to the network as it ties together all data specific to a vessel and throughout a given trip.
It is the basis for identifying patterns created in the trip as it relates different data points
for a specific trip together. In the dataset, voyage IDs are unique numbers that are only
repeated when the same trip is undertaken again.

Length of vessel

Vessel length is one of the static data collected for each data point. This measure is a

great variable for determining the vessel’s size. It is relevant to the network for ETA

prediction since a vessel’s size determines its speed and maneuverability. Length of a
vessel in this dataset is expressed in meters.

Beam of vessel

Similar to the length of the vessel, the beam is also a measure of a vessel’s size. Coupled
with vessel length, beam describes the vessel’s platform area, expressed in meters.
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IMO number

The International Maritime Organization (IMO) number is a unique ID for a particular
vessel; however, in the data points collected, there was repetition of an IMO for every
trip by the same vessel with a different voyage ID.

Speed

A vessel’s speed is a major factor that determines its time of arrival to port. Generally,
the greater the speed, the lower the time required to complete a trip, other variables kept
constant. This makes the speed of travel an indispensable parameter in this analysis.

Average speed

It was necessary to calculate a vessel’s average speed from a time previous data point.
This variable gives the network a better view of previous speeds by the vessel. This
compensates for any sudden drop or increase in the vessel’s speed throughout the trip.

Heading

The heading provides the network with the vessel’s direction at that point. The network
tries to understand and be trained on the direction taken by the vessel at such location.

Course

The course of the vessel provides the network with the direction of its final destination
from its current location. Expressed in degrees, it improves the network’s directional
sense.

Latitude and longitude

Latitude and longitude are the basis for determining a vessel’s location at different data
points recorded. It is relevant to the network as it is a known fact that the closer you are
to destination, the faster you can reach it. Hence, the longitude and latitude expressed in
decimal format were included in this analysis.

Distance to buoy

The linear distance between a vessel’s current location and the sea buoy was an important
variable in this analysis. We used the Haversine distance, which is based on a spherical
model of the earth, to calculate this distance. Haversine distance is defined as follows:

ZTO\/sinZ (Yz ;yl) cos(y1)cos(yz)sin? (%)

d((x1,y1), (x2,¥2) = 1609 (%)

where

x; and x,: first and second longitude values, respectively
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vy, and y,: first and second latitude values, respectively
2ry: approximate radius of Earth (6,378,137 m)

Although the linear distance does not represent the actual path taken by the vessel, it
provides a rough estimate of the vessel’s distance from the destination. Linear distance
for this analysis is expressed in miles.

Distance terminal

Similar to the distance to the buoy, the distance to the terminal is calculated using the
latitudes and longitudes of the current location and destination.

3.3.2 Output Variables
Buoy arrival time

This is the difference between the data point generation time and the vessel’s actual time
of arrival at the buoy, expressed in minutes. This is the output parameter that the network
learns to predict. Buoy arrival time was determined by the following equation:

ATA = ((Dara - Dpgr)*1440)+((Hata-Hpgr )X60)+(MaTA-MpDGT) (6)
where
D pgr : data point generation date (mm/dd/yyyy)
Data : ATA date (mm/dd/yyyy)
H pgr : data point generation hour
Hata : ATA hour
M pgr : data point generation minute
Mata : ATA minute
Berthing time

Similar to actual time of arrival, the berth time is also the difference between the data
point generation time and the actual berth time of the vessel at the terminal. This serves
as the output parameter for the second leg of the trip from the buoy to the container
terminal. Berth time is derived from the expression below.

Berth Time = ((DBT'DDGT)X 1440)+((HBT 'HDGT )X60)+(MBT 'MDGT) (7)
where

D pgr : data point generation date (mm/dd/yyyy)
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Dgr: ATA date (mm/dd/yyyy)

H pgr : data point generation hour
Hpgt : ATA hour

M pgr : data point generation minute

Mgt : ATA minute

3.4 Procedure

The first step was to normalize each dataset. Normalization is essential to avoid the large
impact that some variables can have on the prediction variable due to its scale. Min-max
normalization was employed. Using the index variable, we created training and test datasets; we
used 80% of each dataset as the training dataset and the remaining 20% as the testing dataset.

There is no fixed rule on how many hidden layers or hidden neurons to use in a network.
Alice (2015) stated that the number of neurons should be between the input layer size and the
output layer size, usually 2/3 of the input layer size. The number of hidden layers and nodes in
this analysis were selected through trial and error. In this section, we borrowed ideas from
Vishwakarma (1994), who recommended comparing node size for one hidden layer and two
hidden layers to identify the best option. Hence, it was decided to compare networks with one
and two hidden layers when selecting the number of hidden nodes to consider. Through trial and
error, the optimal number of hidden layers and neurons was selected. Table 3.2 represents the
error levels upon which selection was made.

Table 3.2: Basis for Architecture Selection
1 Hidden Layer 2 Hidden Layers
Neurons | Error | Neurons | Error | Neurons | Error | Neurons | Error
10 2.0019 5,5 2.0411 6,4 9.4283 7,3 2.9491
9 2.8078 5,4 2.7014 6,3 3.0238 7,2 2.0763
8 2.3875 4.4 6.4157 5,3 2.1679 6,2 2.2155
7 3.1467 43 2.6130 5,2 3.1834 6,1 3.2063

The network that was built using one hidden layer with 10 neurons produced the least
network error. This made the structure of the network [11, 10, 1], representing 11 input neurons,
one hidden layer with 10 neurons, and 1 output neuron (Fig. 3.1).
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Figure 3.1: Architecture of Neural Network Developed for ETA Prediction

The output layer of the NN is represented using a single neuron, which is aimed at
predicting an ETA as close as possible to the actual time of arrival (ATA).

3.4.1 Training Phase

During training, 80% of records that included the input variables alongside the output
variable (actual time of arrival) were provided to the NN. The aim of this training phase is for
the network to identify patterns and relationships between input and output variables by

finding the optimal weights that connect the NN layers. The network was trained through
back-propagation.

3.4.2 Testing Phase

The testing phase is when the error of the NN is determined. It was the phase responsible for
determining the developed network’s accuracy. Here, another dataset without an output

variable was provided to the network, and the network was made to predict the output (vessel
arrival time).

The study area was unique and thus required a special approach for trips from the pilot point
(sea buoy) to the respective terminals. With this in mind, the above-mentioned procedures
were repeated using data relevant to this portion of the trip. This section considers the
complete trip up to the terminals, where transfer of modes occurs. This portion of the vessel
trip possesses different attributes, because the trip is performed in a controlled environment
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(ship channel) with many restrictions. The output parameter for this leg of the trip was the
berthing time. The distance applied to the network for this leg was the distance from the buoy
to the terminals. The NN developed was used to predict the arrival time to terminals at
different locations (Bayport and Barbours Cut).

3.4.3 Error Metrics Used for Evaluating ETA Predictions

The model developed for determining the vessel’s ETA to the Port of Houston was evaluated
using two error metrics: mean absolute error (MAE) and root mean square error (RMSE).
The MAE metric is a representation of the average error in minutes, whereas the RMSE
supplies the variance of the prediction errors and is always greater than the MAE. The MAE
is determined as follows:

MAE = L= 1Xi—Yil (8)
n

In a similar pattern, the RMSE was determined using the formula:
T Xi-Yy)?
RMSE = | £ 0" ©)

where

X; : actual time of arrival
Y; : predicted time of arrival from the model
n : the number of observations

3.5 Results

This section presents the results obtained by applying the described methodology. The
focus is more on the errors of the methodology, which is a representation of how well the model
captured and learned from the presented data. It identifies the level of discrepancy between the
ETA and the ATA at the Port of Houston. For the medium time horizon, errors were estimated at
different time intervals, between 5 days and one day to arrival. Figure 3.2 shows trends in the
accuracy of the predictions. This result was based on hourly data points as input to the NN. The
accuracy of the ETA improved as the vessel approached the pilot point. Day 5 to arrival records
had prediction MAE and RMSE of 1055 and 1501 minutes, respectively. Prediction accuracy
improved by 41.6% for results obtained at 4 days to arrival. This improvement extended to the
third day and second day to arrival by 25.3%. At one day to arrival, the prediction MAE and
RMSE were at 246 and 345 minutes, respectively.
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Figure 3.2: Mean Absolute and Root Mean Square Errors on ETA Predictions from
Developed Neural Networks for the Last Five Days before Arrival at Buoy

Predictions made in the last 24 hours to arrival also followed the same trend as the last 5
days readings. There was a steady decrease in prediction error as the vessel approached the final
hour of the trip to the buoy. The trend in the error level at different hours is presented in Figure
3.3. At 24 hours to arrival, the discrepancy in the predicted time of arrival was 246 and 345
minutes for MAE and RMSE, respectively. As the vessel approached the destination and within

the last two hours before arrival at buoy, there was an approximate 93% drop in the errors with
15 minutes MAE and 21 minutes RMSE.
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Figure 3.3: Mean Absolute and Root Mean Square Errors on ETA Predictions from
Developed Neural Networks for the Last 24 Hours before Arrival at Buoy

Prediction error data was collected for trips between the pilot point (buoy) and terminals.
Results for Barbours Cut and Bayport terminals were estimated separately. Data points for
predictions on both legs of the trip differ in quantity; hence, the expressions used for calculating
the total prediction errors are as follows:

nlMAE1+Tl2MAE2
MAE = == 5
total ny+n, ( )
__ |n1RMSE;*+n;RMSE,?
I ©)
11t

where
n; : number of prediction records for trips between reference point and buoy
n, : number of prediction records for trips between buoy and terminal
MAE; : mean absolute error for trips between reference point and buoy
MAE, : mean absolute error for trips between buoy and terminal
RMSE; : root mean square error for trips between reference point and buoy
RMSE; : root mean square error for trips between buoy and terminal

Figures 3.4 and 3.5 show the MAE and RMSE of prediction for trips to Barbours Cut Container
Terminal when the reference point is between the last 5 days and last 24 hours to pilot point.
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Figure 3.4: Mean Absolute and Root Mean Square Errors on ETA Predictions from

Developed Neural Networks for Trips to Barbours Cut Terminal Considering Five Days
before Arrival at Buoy
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Figure 3.5: Mean Absolute and Root Mean Square Errors on ETA Predictions from
Developed Neural Networks for Trips to Barbours Cut Terminal Considering 24 Hours
before Arrival at Buoy

For trips to Barbours Cut Terminal, the model’s prediction strength improved beyond
what were experienced when only trips to the sea buoy were analyzed. These predictions
followed the same trend of reduction in error as the vessels approached the terminal. Comparing
these results to those obtained for trips to the sea buoy shows that the predictive strength
improved. Five days before arrival at sea buoy, the MAE and RMSE were at 1055 and 1510
minutes, respectively, for the predictions made to the sea buoy. The errors dropped to 1036 and
1495 minutes at the Barbours Cut terminal level analysis. This reduction in error level was
similar for all time periods leading up to the final two hours before arrival at the buoy. Similarly,
Figures 3.6 and 3.7 show the MAE and RMSE, respectively, of predictions for trips to Bayport

Container Terminal when the reference point is between the last five days and the last 24 hours
to the pilot point.
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Figure 3.6: Mean Absolute and Root Mean Square Errors on ETA Predictions from
Developed Neural Networks for Trips to Bayport Terminal Considering Five Days before
Arrival at Buoy
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Figure 3.7: Mean Absolute and Root Mean Square Errors on ETA Predictions from
Developed Neural Networks for Trips to Bayport Terminal Considering 24 Hours before
Arrival at Buoy

At the Bayport terminal level, the NN produced up to a 5% improvement (5% reduced
MAE) in predictive strength as compared to predictions made at the buoy level. In terms of the
RMSE, there was an improvement of about 4% in the predictive strength of the network when
comparing predictions made at the buoy and Bayport terminal level.

After presenting the result obtained from the neural network, understanding the
contribution of the variables in predictions made at different time-frames will provide a better
explanation of the knowledge extracted from the data. Identifying the contribution of the
variables means quantifying the importance of the variable used in the network.

Table 3.3 presents the results obtained from calculating the variable importance over the
last 24 hours of the vessel’s arrival time predictions. Olden’s algorithm was employed to
quantify and identify variables at different hours.
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Table 3.3: Variable Importance over the Last 24 Hours of the Vessel’s Arrival Time
Prediction

Last Hours

2 4 6 8 10 12 14 16 18 20 22 24

Voyage

D 3.1 1.3 57 | 34 | 04 1.8 0.2 0.3 1.1 02| 13 0.6

IMO 2211 102 | 09 33 0.9 7.7 0.7 1.2 2.5 0.0 [ 163 | 0.8

Length 10.6 | 1.9 0.1 0.2 0.5 3.1 0.0 1.0 23 0.6 | 5.6 0.1

Beam 25 | 43 94 1.7 | 42 54 | 912 | 16.8 | 56.7 | 96.0 | 59.3 | 71.0

Heading 1.5 1.0 | 221|146 | 140 | 17.0 | 1.0 25 | 116 | 1.5 | 1.7 | 93

Speed 20.8 | 4.2 43 | 11.5 | 3.0 2.7 24 14 1.7 | 03 | 35 | 03

Average | 151 291 | 95 | 253 01 [ 114 | 15 | 11 [ 15 | 01| 04 | 43
Speed

Course 0.1 2.2 06 | 273 | 0.1 0.0 0.3 0.0 03 | 01 | 07 | 0.1

Latitude 1.9 54 0.1 0.4 1.1 44 0.1 3.5 00 | 04 | 1.6 5.1

Longitude | 18.4 | 24.7 | 232 | 43 | 17.1 | 38.6 1.7 169 | 2.7 | 04 | 0.8 1.6

Distance | ¢ 3 | 156 | 242 | 80 [ 587 78 | 09 | 554 | 196 | 0.5 | 87 | 68
to Buoy

The importance of vessel length in the last two hours of the prediction stood out. The result
in Table 3.3 shows a significant increase in the importance of length when compared to earlier
hours of the trip. There was a 457% increase from the last level of relative importance for length,
from 1.9% to 10.6%. This increased importance is due to the available sailable area during these
periods. As the vessel approaches a region of higher vessel density, the effects of vessel length
on speed and maneuverability begin to manifest. In this time interval, more attention must be
paid to the vessel’s speed and maneuvering pattern to avoid collisions.

Highest speed importance was also observed at this time interval as greater caution is
required in this region, which tends to affect sailing speed. Sailing speed during this segment of
the trip is usually at its lowest. In the last two hours of the trip, speed was the most important
variable. It should also be noted that the importance of speed in the model rose by about 395%
compared to the previous 4 hours of the trip speed, from 4.2 to 20.8% of relative importance.
Hence, the influence of speed as a variable developed for determining arrival time of a vessel to
port is at the highest when vessels are close to port, a region where congestion is high.
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Latitude and longitude as factors that identify the location of a vessel have been identified
as important variables for predicting vessel arrival time as they also determine the distance
between the vessel’s current location and destination. Due to the location of the Port of Houston
and the path followed, the majority of trips made by vessels heading to the port are northward.
Hence, these movements are along the longitude which justifies greater values recorded in
importance level of longitudes as compared to latitudes. Less east or west orientation of the trips
in these final hours was observed.

3.6 Summary

A description of the approach employed in determining the ETA was presented. Types of
data used were described, and the procedure was explained. Results of this approach were also
presented.
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Chapter 4. Summary and Conclusions

4.1 Introduction

A neural network was applied to predict the ETA of vessels. The developed network
produced interpretable results, which require a summary based on its applicability. Results of the
analysis were presented in Section 3.5 with brief interpretations. The rest of this chapter is
organized as follows. Section 4.2 provides a summary of the results, and concludes with the
author’s views. Section 4.3 details directions for further research to improve ETA prediction
using machine learning.

4.2 Summary and Conclusions

This research described a neural network approach that can be used to generate the ETA
of vessels to port terminals. From the results collected, we found that there is great potential in
the use of neural networks in this pursuit. Our findings show that near exact predictions can be
achieved even without prior estimations by vessel captains. The results indicated that the farther
from the destination, the greater the error in prediction. This is also evident in the comparison of
prediction errors between Bayport and Barbours Cut Container Terminals. These results follow a
trend similar to that in the work by Parolas (/0), where a neural network was applied. Another
observation in the results of this analysis is that predictions made at the terminal level were more
accurate than those made at the buoy level. Although there are inaccuracies in the prediction, the
ETA generated by this approach provides a timeframe within which the terminal and trucking
companies can plan ahead for arriving vessels. It should also be noted that the results from the
variable importance analysis will assist in the selection of useful variables in future predictions.

4.3 Directions for Future Research

For further studies, improvements can be made by exploring a larger dataset. Considering
other machine learning algorithms will also help to reveal possibilities for improvement.
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	Multimodal transportation is an evolving system in supply chain management and an effective approach for facilitating the movement of cargo when different modes of transportation are available and involved. Since one mode of transportation is usually insufficient for door-to-door transportation of cargo, multimodal transportation has become an important concept. Hence, it becomes necessary to transfer goods from one mode of transportation to another. For an effective multimodal system, the different modes o
	 
	The accuracy in arrival time of the vessel is most vital to imports, since it initiates the process of a multimodal transfer. Lack of certainty in estimated time of arrival (ETA) creates problems like delays and congestion at ports. It also leads to inadequate planning and resource management for port facilities and receiving modes of transportation. Vessel Automatic Information System (AIS) data provide vessels’ voyage information, including the ETA as determined by the vessel’s captain/operator. This info
	 
	This research describes an approach that generates the ETA of vessels to the port terminals by using machine learning and AIS data. The results of the analysis show that near-exact predictions can be achieved without prior estimations by vessel captains. The results indicate that the farther from the destination, the more errors are made in prediction. This is also evident in the comparison of prediction errors between Bayport and Barbours Cut, two container terminals in the Port of Houston. The analysis sh
	  
	1.1 Problem Statement 
	Multimodal transportation is an evolving system in supply chain management and movement of cargo. It has become an especially important concept because one mode of transportation is often insufficient for door-to-door transportation of cargo. Hence, it becomes necessary to transfer goods from one mode of transportation to another and to encourage the management of this process by the same carrier company for effective coordination. For an effective multimodal system, the various modes of transportation invo
	1.2 Objectives 
	The objectives of this report are to (1) identify and collect AIS data for ETA determination; (2) determine the ETA of vessels via a machine learning approach; and (3) evaluate the accuracy of the determined ETA. 
	1.3 Expected Contributions 
	To accomplish the objectives of the study, several tasks have been undertaken to develop a network for predicting vessels’ time of arrival when the captain’s ETA input to AIS is unavailable. This will make it possible for the operators of carriers without prior knowledge of the estimated duration of a given trip to generate ETAs for their vessels based on their current locations and other available parameters. 
	1.4 Report Overview 
	Chapter 2 of the report provides information on the different structures and components of a vessel-to-truck multimodal system and their interrelations. Stakeholders are identified, and the importance and challenges of a multimodal system are presented. With inaccurate ETAs identified as one of the problems of a multimodal system, Chapter 3 describes various approaches for deriving the ETA of vessels from data. This chapter also reviews previous studies on ETA determination, including those that employ mach
	Chapter 2 of the report provides information on the different structures and components of a vessel-to-truck multimodal system and their interrelations. Stakeholders are identified, and the importance and challenges of a multimodal system are presented. With inaccurate ETAs identified as one of the problems of a multimodal system, Chapter 3 describes various approaches for deriving the ETA of vessels from data. This chapter also reviews previous studies on ETA determination, including those that employ mach
	 

	Chapter 2.  Literature Review
	Chapter 2.  Literature Review
	 

	2.1 Introduction 
	This chapter provides an overview of the operations of a multimodal system for container cargo, while identifying its benefits and problems as well as ways of improving the system. The review identifies the root cause of a major problem and presents existing practices that have aimed to improve the system. This review also summarizes operations in the Port of Houston as pertains to container cargo. 
	2.2 Multimodal Transportation System 
	Multimodal transportation is often mistaken with intermodal transportation. These two terms are highly similar except that in multimodal transportation, the same carrier company is responsible for moving the shipment in all legs and modes of transportation employed. Hence, the whole transportation process is under a single contract or bill of lading. Multimodal “freight” transportation can thus be defined as the movement of “cargo” by the coordinated and sequential use of two or more modes of transportation
	Multimodal transportation can take various forms, depending on the elements (mode of transportation) involved. Table 2.1 delineates these elements. 
	Table 2.1: Elements of Multimodal Transportation 
	 
	 
	 
	 

	Carriers 
	Carriers 

	Conveyance 
	Conveyance 

	Terminal 
	Terminal 

	Infrastructure 
	Infrastructure 

	Span

	Ocean 
	Ocean 
	Ocean 

	Shipping lines 
	Shipping lines 

	Ships and barges 
	Ships and barges 

	Ports 
	Ports 

	Sea and inland waterways 
	Sea and inland waterways 

	Span

	Road 
	Road 
	Road 

	Motor carriers 
	Motor carriers 

	Trucks 
	Trucks 

	Truck terminals 
	Truck terminals 

	Roadways 
	Roadways 

	Span

	Air 
	Air 
	Air 

	Air cargo carriers 
	Air cargo carriers 

	Airplanes 
	Airplanes 

	Airports 
	Airports 

	Airways 
	Airways 

	Span

	Rail 
	Rail 
	Rail 

	Railroads 
	Railroads 

	Trains 
	Trains 

	Rail terminals 
	Rail terminals 

	Railways 
	Railways 

	Span


	 
	Figures 1-3 illustrate three basic multimodal cargo movements: truck-marine, truck-air, and truck-rail. It should be noted that more combinations of elements are possible in multimodal transportation than listed above. 
	2.2.1 Truck-Marine 
	A typical truck-marine cargo movement starts with the shipper or consignor loading the cargo into the container. A motor carrier picks up the container from the shipper and transports it to the seaport by road. When the container arrives at seaport, it is transferred to the vessel (ocean carrier) that transports it to an overseas port, where the container is transferred to the second motor carrier for delivery to the consignee. 
	 
	 
	Figure 2.1: Truck-Marine Multimodal Transportation 
	 
	2.2.2 Truck-Air 
	In a typical truck-air multimodal cargo movement, a motor carrier picks up the cargo from the shipper or consignor and transports it to an airport freight terminal. The cargo is then transferred to the airplane, which transports it to another airport, where a second motor carrier picks it up and delivers it to the consignee. 
	 
	 
	Figure 2.2: Truck-Air Multimodal Transportation 
	 
	2.2.3 Truck-Rail 
	In a truck-rail combination, a motor carrier picks up the cargo from the shipper and transports it to the rail terminal, where it is transferred to a rail car. The cargo is transported by rail to another rail terminal, where the second motor carrier picks it up and delivers to the consignee. 
	 
	 
	Figure 2.3: Truck-Rail Multimodal Transportation 
	 
	Which mode of transportation to employ is a critical decision and highly dependent on the performance variables and availability. Apart from the logistic cost of moving freight, some of the most important factors to consider when selecting the mode of transportation, according to the Center for Urban Transportation Research (CUTR) at the University of South Florida, are schedule reliability and trip time. Shipment delays may affect the logistic costs, for example, by increasing the inventory cost or adding 
	2.3 Vessels in Multimodal Transportation 
	For the first time since 2010, the economic growth rate has outperformed expectations. In 2017, the GDP grew by 3.7%, and this trend is expected to continue through 2018 with a prediction of 4.0% growth (Hatzius et al., 2017). Growth in GDP, trade and seaborne shipments 
	are interlinked and continue to move in tandem (Maritime-insight, 2015). The era of rapid economic and technical-technological development of modern production requires a transportation system that is well-organized and, above all, safe. Maritime transportation involves transportation of passengers and goods by sea, also known as “shipping trade,” which most often is cargo shipping. Samija (n.d.) stated that shipping operations are operated in accordance with their operational processes and quality control 
	The basic function of maritime transportation is to physically transport cargo from the area of supply to the area of demand, following regulated procedures and policies that facilitate the activity. Essential for the movement of goods by maritime transportation are the following components:  
	 functional infrastructure, such as ports/terminals;  
	 functional infrastructure, such as ports/terminals;  
	 functional infrastructure, such as ports/terminals;  
	 functional infrastructure, such as ports/terminals;  

	 means of transportation, such as ships and barges in good working condition; and 
	 means of transportation, such as ships and barges in good working condition; and 

	 organizational systems to ensure that ships and fixed infrastructure are used effectively and efficiently. 
	 organizational systems to ensure that ships and fixed infrastructure are used effectively and efficiently. 



	Maritime transportation has been highly relevant in multimodal transportation and transportation of cargo in general, due to its advantages in safety, energy efficiency, and environmental quality. Table 2.2 shows the advantages of maritime transportation over rail transportation. The capacity of cargo vessels is its biggest advantage over other modes, but this is also subject to vessel size (Tennessee Tombigbee Waterway).  
	 
	Table 2.2: Comparing Vessel to Rail Car and 100-Car Train Unit 
	 
	 
	 
	 

	Number of miles per gallon carrying one ton of cargo 
	Number of miles per gallon carrying one ton of cargo 

	Hydrocarbons emitted 
	Hydrocarbons emitted 
	(lbs/ton-mile) 

	Deaths per billion ton-miles 
	Deaths per billion ton-miles 

	Span

	Barge capacities 
	Barge capacities 
	Barge capacities 

	514 
	514 

	0.0009 
	0.0009 

	0.01 
	0.01 

	Span

	One rail car 
	One rail car 
	One rail car 

	202 
	202 

	0.0046 
	0.0046 

	0.84 
	0.84 

	Span

	100-car train unit 
	100-car train unit 
	100-car train unit 

	59 
	59 

	0.006 
	0.006 

	1.15 
	1.15 

	Span


	Source: Tennessee Tombigbee Waterway (2017) 
	Another great advantage of maritime transportation is its cost. Based on the data presented by Ballou (1998) and displayed in Table 2.3, maritime shipping has a lower cost per ton-mile than the rail and road transportation mode. This gives preference to the selection of vessels as a mode transportation, especially for large cargo. 
	 
	Table 2.3: Cost Associated with Different Modes of Transportation (per ton-mile) 
	Mode 
	Mode 
	Mode 
	Mode 

	Maritime 
	Maritime 

	Rail 
	Rail 

	Road 
	Road 

	Span

	Cost (1995 USD) 
	Cost (1995 USD) 
	Cost (1995 USD) 

	1¢ 
	1¢ 

	3¢ 
	3¢ 

	25¢ 
	25¢ 

	Span

	Cost (2014 USD) 
	Cost (2014 USD) 
	Cost (2014 USD) 

	1.6¢ 
	1.6¢ 

	5.0¢ 
	5.0¢ 

	$3.88  
	$3.88  

	Span


	Source: Ballou (1998) 
	2.4 Trucks in Multimodal Transportation 
	The importance of trucks to multimodal transportation cannot be over-emphasized. In most cases, a truck begins and ends the movement of freight either by rail, vessel or plane. Although the cost of transporting by road is higher than by other means, the accessibility and efficient network capacity of the road cannot be matched. The volume of freight moved by truck has grown in tandem with the increase in the marine, rail and air freight volume. Overall freight tonnage is expected to grow between 2016 and 20
	Table 2.4: Annual Tons of Freight Moved across the US and Projected Increase 
	 
	 
	 
	 
	 

	2015 
	2015 

	2045 
	2045 

	Increase 
	Increase 

	Span

	Truck 
	Truck 
	Truck 

	11.5 billion 
	11.5 billion 

	16.5 billion 
	16.5 billion 

	44% 
	44% 

	Span

	Rail 
	Rail 
	Rail 

	1.7 billion 
	1.7 billion 

	2.1 billion 
	2.1 billion 

	24% 
	24% 

	Span

	Water 
	Water 
	Water 

	835 million 
	835 million 

	1.2 billion 
	1.2 billion 

	38% 
	38% 

	Span

	Air 
	Air 
	Air 

	7 billion 
	7 billion 

	24 billion 
	24 billion 

	234% 
	234% 

	Span

	Total 
	Total 
	Total 

	18 billion 
	18 billion 

	25.3 billion 
	25.3 billion 

	40% 
	40% 

	Span


	Source:  USDOT - Beyond Traffic 2045 (2018) 
	Road transportation is also highly relevant to freight movement, because it has the highest network connectivity, which in turn promotes end-to-end delivery of cargo. Figure 2.4 displays the network for 2011 commodity movement. Highways constituted a major network throughout the US. They even support the inland waterways; as they are mainly used along the Mississippi River and its tributaries (Dong et al., 2015). 
	 
	Adopted from USDOT Bureau of Statistics, 2015 
	Figure 2.4: Tonnage on Highways, Railroads, and Inland Waterways in 2011 
	 
	2.5 Containerization in Multimodal Transportation 
	Containerization is the generalized use of the container as a support for freight transportation. It has increasingly been adopted as a mode for supporting freight distribution since a growing number of transportation systems can handle these standardized containers. Efficiency in the movement of freight from one location to another using just one mode of transportation has always been limited. It has remained so due to the difficulties encountered when transferring goods from one mode of transportation to 
	A shift to multimodal transportation was encouraged by the success achieved through the introduction of the container. The most obvious advantage of using shipping containers is the fact that it makes loading and unloading easier and enables rapid change from one mode to another (Broeze, 2002). Containerization has impacted the conventional transportation system in two distinct ways – spatially and organizationally. With the introduction of the container system, processes in the port have drastically change
	multimodal operations. The focus is now more on the organization of the transportation industry and the synchronization of an integrated logistical system (Carrese and Tatarelli, 2011). 
	To operate an efficient multimodal system, intensive co-operation and co-ordination among the various transportation modes are essential. Containers have the advantage of being used by several modes of transportation (i.e., maritime, rail and road) since these modes can handle containers smoothly. International Standardization for Organization (ISO) containers are 10, 20, 30 or 40 feet long. However, for measurement, the reference size container 20 feet long, 8 feet high and 8 feet wide, corresponding to th
	2.6 Stakeholders in Multimodal Transportation 
	2.6.1 Carriers 
	Carriers are recognized companies chartered by the consignor for the transportation of cargo from origin to destination. In the case of a marine-truck multimodal system, the carrier splits its activities into vessel transportation and truck transportation. To carry out this task, they operate a fleet of vessels that are suited for transporting the type of cargo intended. Vessel carriers can transport cargo in containers, tankers or other means. A carrier in a multimodal system is known as a Multimodal Trans
	2.6.2 Container Terminals 
	A container is a mode of cargo transportation that requires specialized ports and terminals for effective handling. The facilities required to transport containers between ships and shore include berths for docking the ship, land areas for container storage and handling equipment like cranes, which are basically used to load and offload containers to and from the vessels (Liu, 2010). A typical container terminal is represented in Figure 2.5. According to Steenken (2004), a container terminal is divided into
	 
	 
	 
	Adopted from Steenken, 2004 
	Figure 2.5: Schematic Representation of Container Terminal 
	 
	2.6.3 Importers 
	Importers are the buyers and receivers of cargo in transported containers and play a significant role in carrier selection as they are more interested in on-time and cost-efficient delivery of goods at the specified location. Importers take into account the convenience they can get from the use of a carrier. Importers are interested in receiving their goods in good shape and within the agreed time-frame at the destination of interest. 
	 
	2.7 Advantages of Multimodal Transportation 
	The multimodal transportation system is considered a game-changer as it is quite effective in solving most cargo mobility issues. By combining more than one mode of transportation and properly managing the entire process, it facilitates the best rate and timely delivery. The introduction of multimodal transportation eliminates the need for lengthy processing, as shown in Figure 2.5. Multimodal transportation has been of great benefit to the movement of freight in the several ways: 
	 
	a) Minimizes time loss at trans-shipment points – Due to continuous and unbroken communication links maintained by multimodal transportation operators, there is effective coordination of trans-shipment points, which avoids the time that would have been lost if the transportation processes were segmented. 
	a) Minimizes time loss at trans-shipment points – Due to continuous and unbroken communication links maintained by multimodal transportation operators, there is effective coordination of trans-shipment points, which avoids the time that would have been lost if the transportation processes were segmented. 
	a) Minimizes time loss at trans-shipment points – Due to continuous and unbroken communication links maintained by multimodal transportation operators, there is effective coordination of trans-shipment points, which avoids the time that would have been lost if the transportation processes were segmented. 

	b) Provides faster transit of goods – Multimodal transportation physically shortens the market as goods are transported quickly from one point to another. The disadvantages of distance from markets and the typing-up of capital are eliminated. It also reduces the distance between source materials and customers. 
	b) Provides faster transit of goods – Multimodal transportation physically shortens the market as goods are transported quickly from one point to another. The disadvantages of distance from markets and the typing-up of capital are eliminated. It also reduces the distance between source materials and customers. 


	c) Reduces the burden of documentation and formalities – Multimodal transportation minimizes the burden of multiple documentation and other formalities connected with each segment of the transportation chain since one operator handles all modes.  
	c) Reduces the burden of documentation and formalities – Multimodal transportation minimizes the burden of multiple documentation and other formalities connected with each segment of the transportation chain since one operator handles all modes.  
	c) Reduces the burden of documentation and formalities – Multimodal transportation minimizes the burden of multiple documentation and other formalities connected with each segment of the transportation chain since one operator handles all modes.  

	d) Reduces cost of exports – The inherent advantages of a multimodal transportation system help to minimize the cost of exports and improve the competitive position of the MTO. 
	d) Reduces cost of exports – The inherent advantages of a multimodal transportation system help to minimize the cost of exports and improve the competitive position of the MTO. 

	e) Establishes only one agency to deal with – Consignee just needs to transact with the MTO as far as transportation of goods is concerned. Multimodal transportation eliminates the need to establish a connection with all entities individually. 
	e) Establishes only one agency to deal with – Consignee just needs to transact with the MTO as far as transportation of goods is concerned. Multimodal transportation eliminates the need to establish a connection with all entities individually. 


	 
	 
	Adopted from Hayuth (1987) 
	Figure 2.6: Segmented Transportation versus Multimodal Transportation 
	 
	2.8 Factors Affecting the Efficiency of Multimodal Transportation 
	The growth in multimodal freight transportation is associated with the pressure for improved performance. This warrants the identification of factors that could affect the efficiency and throughput of the system. A major factor affecting multimodal transportation, and particularly the truck-marine combination, is congestion. Congestion at the port could result from vessel operators' poor schedule reliability, inefficiency of the transportation infrastructure that links a marine terminal to roadways, and the
	 
	The efficiency of a transportation system is a function of its reliability. Reliability and accuracy of vessels’ Estimated Time of Arrivals (ETAs) are some of the most important characteristics of freight transportation. In an era of just-in-time inventory systems, the weakest link of a multimodal system will not be the port or terminal operations but the reliability in 
	arrival time of the vessel to the port. Therefore, meeting the time announced in schedules is significant to shipping lines. Unless the inaccuracy of ETAs is addressed, the multimodal system as a whole will be inefficient. Schedule reliability may be the factor that shippers consider most important when selecting a mode of transportation and planning their supply chains with realistic expectations of delivery time (Notteboom, 2006). 
	 
	Chung and Chiang (2011) categorized shipping activities into port assignments and navigation by sea, which were further divided into factors and criteria that could influence schedule reliability. These factors are as follows: operating strategy of shipping lines, staff in shipping lines, process management in shipping lines, and port’s condition. The factors and criteria are summarized in Table 2.5 below. 
	 
	Table 2.5: Influential Factors on Schedule Reliability of Container Shipping Lines 
	Goal 
	Goal 
	Goal 
	Goal 

	Objective 
	Objective 

	Criteria 
	Criteria 

	Statement of criteria 
	Statement of criteria 

	Span

	Influential Factors on Schedule Reliability 
	Influential Factors on Schedule Reliability 
	Influential Factors on Schedule Reliability 

	Operating strategy of shipping lines 
	Operating strategy of shipping lines 

	Planning suitable ports 
	Planning suitable ports 

	Shipping lines need to choose suitable ports according to port condition, cargo volume, etc. 
	Shipping lines need to choose suitable ports according to port condition, cargo volume, etc. 

	Span

	TR
	Chase strategy 
	Chase strategy 

	Whether shipping lines execute the chase strategy or not 
	Whether shipping lines execute the chase strategy or not 

	Span

	TR
	Specialized terminal investment 
	Specialized terminal investment 

	Shipping lines have invested in specialized terminals 
	Shipping lines have invested in specialized terminals 

	Span

	TR
	Staff in shipping lines 
	Staff in shipping lines 

	Staff's sense of mission 
	Staff's sense of mission 

	Every staff member has strong sense of mission in their work 
	Every staff member has strong sense of mission in their work 

	Span

	TR
	Ability of staff to coordinate with external relations 
	Ability of staff to coordinate with external relations 

	Staff should coordinate well with market players (e.g., port authority and customs) to decrease waiting time and increase efficiency 
	Staff should coordinate well with market players (e.g., port authority and customs) to decrease waiting time and increase efficiency 

	Span

	TR
	Control and management of staff in terminal 
	Control and management of staff in terminal 

	Shipping lines should effectively control and manage staff in the terminal to avoid strike or slow work pace 
	Shipping lines should effectively control and manage staff in the terminal to avoid strike or slow work pace 

	Span

	TR
	Process management in shipping lines 
	Process management in shipping lines 

	Well-arranged time window 
	Well-arranged time window 

	Shipping lines should plan the time window appropriately 
	Shipping lines should plan the time window appropriately 

	Span

	TR
	Planning the berth and warehouse beforehand 
	Planning the berth and warehouse beforehand 

	Before arriving to port, shipping lines should plan the berth and warehouse 
	Before arriving to port, shipping lines should plan the berth and warehouse 

	Span

	TR
	Trans-ship arrangement 
	Trans-ship arrangement 

	Shipping lines should trans-ship properly to avoid delays in delivery 
	Shipping lines should trans-ship properly to avoid delays in delivery 

	Span

	TR
	Ports' condition 
	Ports' condition 

	Free-flowing of ports' access roads 
	Free-flowing of ports' access roads 

	Access roads of a port are free-flowing 
	Access roads of a port are free-flowing 

	Span

	TR
	Berth allocation 
	Berth allocation 

	Berth allocation will influence operating time 
	Berth allocation will influence operating time 

	Span

	TR
	Terminal efficiency 
	Terminal efficiency 

	Terminal efficiency will influence operating time 
	Terminal efficiency will influence operating time 

	Span


	Source: Chung and Chiang, 2011 
	 
	 
	Assessing the importance of each criterion identifies the significance of factors. In terms of schedule reliability, results showed that ‘process management in shipping lines’ is the most influential factor and ‘well-arranged time window’ is the most important factor. A total of 81.5% of the criteria were split between the top five criteria – ‘well-arranged time window,’ ‘transship arrangement,’ ‘planning suitable ports,’ ‘planning the berth and warehouse beforehand,’ and ‘control and management of staff in
	2.9  Synchronizing Vessel and Truck Arrival Time 
	The most important performance measure for port operation is the turnaround time of trucks in the terminal (Esmer, 2008). Their time has not reached its optimum due to various factors, like the lack of synchronization in the time of arrival of vessels and the time of arrival of loading trucks. This creates congestion at the ports, especially when trucks have to wait a long time for the vessel’s arrival. Congestion is a major problem at ports and is becoming common at major US ports. In an attempt to maximiz
	 
	For a synchronized system to be achieved in multimodal transportation, responsibilities must be performed effectively by the trucking company, arriving vessel and terminal. Hence, factors related to these different components need to be addressed. 
	2.9.1 Truck-Related Factors:  
	Trucking operation at the beginning or end of a multimodal process plays a very important role in enhancing the effectiveness and synchronization of the process. Some of the basic characteristics of the trucking operation that should be taken into consideration are traffic condition before arrival at the terminal, availability of trucks, and capacity of the trucks. 
	Traffic before arriving at port 
	The traffic condition of roads leading to the terminal plays a major role in the timeliness of the trucks. Upon a vessel’s arrival, it is very important that receiving trucks are available. The availability of these trucks will only be possible when the trucking company takes into consideration the traffic conditions of roads and any obstructions that could prevent them from arriving at the terminal on time.  
	 
	 
	Availability and capacity of trucks  
	A multimodal system will function well and have synchronized transfer of containers when there are enough trucks to receive and transport containers from arriving vessels. One of the problems that multimodal transportation seeks to eliminate is the use of storage capacity. Hence, it is very pertinent for the available trucks to have sufficient capacity to accommodate the containers carried by the arriving vessel. 
	2.9.2 Vessel-Related Factors 
	The activities of the vessels before arrival at the terminal are major determinants of the seamless transfer of container to and from the truck. The most important factor here is the effective communication between operators of the vessel, the terminal, and the trucks. Information about the vessel should be constantly updated as changes occur in the sailing activities. Information provided to truckers at the destination port should be up to date and accurate so that the trucks can prepare properly for the v
	2.9.3 Terminal-Related Factors 
	The terminal greatly impacts how seamlessly and effectively shipments can be transferred from vessel to truck. Some basic characteristics of the terminal that determine this success are its structure and size, its equipment for handling containers, and its security initiatives. 
	Structure and size of terminal 
	The way a terminal is structured greatly determines how smoothly the process flows. For a terminal to be effective, three attributes must be considered in the design and arrangement of the facility: safety, free flow, and truck turnaround time. The size and arrangement of the terminal can influence the turnaround time of trucks entering and exiting while taking into consideration the free flow and safety of workers. The size and arrangement of the terminal must provide for easy and safe maneuvering of truck
	Container-handling equipment and facilities available 
	Available equipment and facilities for container handling play a vital role in determining the efficiency of terminal activities. The major equipment in a terminal are cranes of 
	different types and capacity. To improve truck turnaround time, Huynh and Walton (2005) examined a measure of increasing yard cranes. They developed methods to help terminal operators evaluate and apply this measure in making decisions for crane purchase and determining how many to purchase. They also studied the availability of cranes versus truck turnaround time. Results indicate that having more road cranes generally lowers truck turnaround time. Another container terminal factor that enhances efficient 
	Security initiative of the terminal 
	One major security program at container terminals is the Container Security Initiative (CSI) announced in 2002. The primary purpose of CSI is to protect the global trading system and the trade lanes between CSI ports. The activities of the CSI in US ports are performed by a team of officers deployed to work with their counterparts in the host nation to target all containers that are potential threats (Container Security Initiative, n.d.). The effectiveness of security checks at originating ports can greatly
	 
	2.10 Estimated Time of Arrival (ETA) 
	ETA is the anticipated time when a vehicle, ship, aircraft, or cargo is expected to arrive at a certain place. Knowledge of ETA is a crucial aspect of transportation as it promotes effective operation planning and prevents unnecessary panic about location of cargo. 
	 
	2.10.1 ETA Relevance to Stakeholders in a Multimodal System 
	Stakeholders in a multimodal system have different uses for a vessel’s ETA. From the moment one decides to transport containers from the origin until it gets delivered at the destination, stakeholders are interested in the arrival time of the vessel. The benefits and applications of this information as it concerns individual stakeholders are highlighted. 
	Carriers 
	Carriers are most concerned with meeting the deadlines set for transportation of cargo to the destination. In a bid to avoid paying penalties on late deliveries, shippers provide a feasible arrival time to shippers. The carrier considers economical speed of travel that will minimize fuel consumption. Hence, ETA information is valuable to carriers as it assists them to know whether they are on track with meeting their deadline with the shipper. This also helps carriers make decisions about speed during the t
	 
	Container terminal 
	The competitiveness of a container terminal is a product of its efficiency in container handling and its preparedness for arriving vessels. Knowledge of a vessel’s arrival time at the terminal helps ports to plan ahead; it assists in allocation of berthing, equipment and personnel. When accurate ETA data is available, terminal operations can be planned in such a way as to prevent congestion as plans can be made for subsequent arriving vessels to promote smooth operations at the terminal. Personnel shifts ca
	Importers 
	Importers are also the most concerned about their cargo’s arrival. The vessel’s arrival time determines the kind of commitment they have with their customers. When an ETA is accurate, it increases the customers’ confidence in their reliability. 
	 
	2.10.2 ETA Determination 
	Fast and accurate calculation of ETA is of great importance in several areas of the ocean shipping industry. Different techniques have been used to determine ETA. There is a general concept which is applicable to all modes of transportation – air, water or road. It revolves around calculating the distance between the cargo and its destination; afterwards, the ETA of that vessel can be estimated by dividing the distance by the sailing speed (Fagerholt, 2000). 
	ETA can also be determined by referring to historical data for that particular itinerary. When data of a trip from point A to point B are collected, one can predict the time required for the same type of trip involving the same points in subsequent trips. Most journeys traveled by vessels feature a series of stops. If one assumes a trip from point A to point C via point B, then the time spent on this journey could be split into time spent from point A to point B and from point B to point C. The time spent a
	Heywood et al. (2009) present the standard method for determining ETA and recommend an easier way by analyzing a particular route’s historical shipment data and segmenting each trip into legs. Each historical leg thus represents one trip from the point at which location data were received to the next transfer point. Over time, the table grows until the commonly traveled path from a given point A to point B is littered with start points for historical leg rows. This method provides more accurate ETA than sim
	When requesting the ETA of in-transit cargo traveling currently at point P between points A and B, the general concept of this recommendation is that the algorithm will query the historical leg table for a similar point P with the same destination B. The system will then use the mean of the elapsed time for each row to calculate the estimated time from the current location to B. The general equation for determining ETA by this method is as follows:  
	                                    (1) 
	 
	      derived from 
	 
	                                   (2)       
	                                                                                                       (3)       
	     ∑                                          (4) 
	 
	where 
	tbz = time to move from b to z 
	ttransfer = time spent at each port 
	tbp = time required to reach first port, considering the historic legs 
	 
	One limitation of this technique is that some segments of the path traveled will yield poor GPS data, due to sparse availability of data in that location. These legs with little location data will lead to errors in ETA calculations. The introduction of a sensitivity radius (see Fig. 2.7a) around the current location of cargo can be the solution. The sensitivity radius was decided using the formula below. 
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	Figure 2.7: Sensitivity Radius for Points (Locations of Cargo) and Transfer Points 
	 
	Another limitation of this technique is the unpredictability of the time spent at transfer points. This was corrected by introducing an arrival circle of radius r and a departure circle of radius 2r, as shown in Figure 2.7b. The cargo is considered to have arrived at the transfer point when the inner sensitivity circle is breached, and the cargo is considered to have departed from the transfer point when it leaves the outer circle.  
	Veldhuis (2015) highlighted steps for developing an automated solution for ETA definition of long-distance shipping. In his work, he created an automated version of the existing process by analyzing the existing way of determining vessels’ ETA which basically entailed the collection of shipping schedules and verification of departure times. Based on the departure time, ETA data is collected from websites (marintraffic.com, apmtrotterdam.nl) and updated in the system. Heywood et al. (2009) reinforced the imp
	The automation process for data collection is known as “Web scraping,” where computer software and programs are used to collect information from the Internet such as Cloudscrape, RapidMiner and WebHarvest. Veldhuis also achieved some predictive results by using historical data to model a ship’s route and splitting the route into parts between various ports. ETA was determined by the time needed to cover the distance between ports and the time spent at these ports. By combining these two methods, more reliab
	2.11 Automatic Identification System (AIS) Data as a Tool for ETA Determination 
	Technology has steadily found its way into operations of different industries and institutions, and multimodal transportation is no exception. The future of multimodal transportation systems lies in the application of new technologies. It is a known fact that technology (information and communication) is the nervous system of multimodal transportation. It comes with many benefits like providing real-time information (visibility and data exchange) about shipments, and gives transporting organizations flexibi
	AIS is an automated and standalone system that has the ability to exchange navigational information between vessels and shore stations equipped with compatible systems that can understand its messages. A basic benefit of AIS is that ship-to-ship and ship-to-shore communication enhances vessel traffic services, monitoring and safety. AIS serves as a broadcasting system onboard the ship. Operating like a radar transponder in the VHF maritime band, it uses VHF broadcast technology to send vessel movement data.
	The most important part of AIS is the transponder, which serves as the receiver and transmitter of feeds. There are three types of AIS transponder: (a) class A, (b) class B, and (c) “receive only.” The question of which transponder to install is based on the type of vessel and type of information to be transmitted and received. Class A is the higher specification of transponders and is mandated for commercial vessels, while class B is the lower classification, and receiver-only transponders are for smaller,
	Class A 
	Under international Safety of Life at Sea (SOLAS) regulations, class A transponders are mandated on all international ships with a gross tonnage of 300 tons or more, and on all passenger ships regardless of size. Class A units must have the ability to send the ship’s 
	information to other ships and to shore. They must also be able to receive and process information from other sources, including other ships. These transponders have a horizontal range of up to 40 nm and transmit continuously at 12.5 watts. The transponder uses Self-Organized Time Division Multiple-Access (SOTDMA) technology so that each transmission is automatically adjusted to avoid interfering with others in range. In areas with high-density shipping, the system also shrinks the area of coverage when nec
	Class B 
	Class B transponders were developed to provide smaller vessels (usually recreational vessels and small fishing boats) with voluntary access to the AIS system benefits enjoyed by the larger vessels. These transponders' horizontal range is around 7 nm, and they transmit every 30 seconds at 2 watts. They use Carrier Sense Time Division Multiple Access (CSTDMA) technology, which checks for Class A transmissions before sending its own signal. Class B information is only broadcast when there is sufficient space o
	Receive-only 
	The third option for a small vessel is to just receive AIS transmissions from other vessels and display them. This was initially used by small vessels before Class B transponders entered the market and came to be favored over the receive-only transponder. Having a receive-only transponder means that you can see other vessels but they cannot see you. 
	Two channels – 87 B (161.975 MHz) and 88 B (162.025 MHz) – in the marine VHF allocation are reserved primarily for AIS transmission. Like the normal VHF, the range depends on antenna height although the AIS signal is more rugged, and hence has longer range. It can typically pick up transmission from a large ship up to 20 miles away. To accommodate many vessels transmitting on the limited channels, a Self- Organizing Time Division Multiple Access (SOTDMA) system is used. This works through a principle where 
	Static information 
	This information is entered into the AIS system upon installation. It only changes if there is a major change in the ship’s characteristics, such as name or ship type. The static information is verified periodically. Such information includes: 1) Maritime Mobile Service Identity (MMSI); 2) call sign and name of vessel; 3) IMO number; 4) length and beam; 5) type of ship; and 6) location of position-fixing antenna. 
	Dynamic information 
	Apart from navigational status information, dynamic information is automatically updated by the ship sensors connected to the AIS. They broadcast every few seconds. For proper and accurate operation of AIS, it is important to properly install and confirm operation of connected sensors. Dynamic information includes 1) ship’s position; 2) position time stamp in Coordinated Universal Time (UTC); 3) course over ground (COG); 4) speed over ground (SOG); 5) heading; 6) navigational status; and 7) rate of turn (RO
	Voyage-related information 
	This information is manually entered and updated based on trip conditions. Voyage-related information includes 1) ship’s draught; 2) hazardous cargo (type); 3) destination and ETA; and 4) route plan. 
	It is important that the navigation status of vessels underway be updated throughout the course of a voyage as the system broadcasts every 2-10 seconds. When vessels are moored or at anchor, they broadcast every 3 minutes. Due to the frequency of broadcast, voyage-related information uses up a significant amount of bandwidth, which may affect the response time when first responders require such information. Sometimes collecting information at coast stations is impossible when the vessels are out of the coas
	 
	Figure 2.8: Data Transfer in AIS 
	 
	There are a number of websites and Internet applications that permit stakeholders to view vessels’ AIS data, such as PortVision (www.portvision.com) and Marine Traffic (www.marinetraffic.com). These work by taking data from numerous receiving points around the coast and aggregating it to create an overall picture. There are also some applications that will transmit AIS data from a tablet or smart phone, such as (http://www.marinetraffic.com/en/p/mais). Provided that Internet connectivity is available, the v
	2.11.1 AIS Data Description 
	Data collected from AIS each have their own relevance, especially for different applications. Relevance of some of the information collected from AIS data are highlighted below. 
	IMO number: The International Maritime Organization (IMO) number is a unique identification for vessels and registered owners/companies. This number was introduced to improve safety and security for vessels. It is linked to a vessel for its useful life, regardless of any change of name or ownership. This number is relevant for unique identification of a vessel, especially in tracking its time of arrival. 
	Call sign: A call sign is allocated to a vessel when first issued a ship radio license. It uniquely identifies vessels within the International Maritime Mobile Service. Call signs are used solely for search-and-rescue purposes. When there is a change in vessel ownership, call signs may be kept with the vessel or the new owner will be directed to obtain a new call sign. 
	Maritime Mobile Service Identity (MMSI): A MMSI is a unique nine-digit number associated with VHF installations that serves as a vessel’s digital “call sign.” They are sent over a radio frequency channel to identify stations. It can be used by telephone or telex subscribers connected to the general telecommunications network to call ships. 
	Length and beam: These are basic characteristics for describing a vessel’s size. They determine how long and wide a vessel is and provide information on the vessel’s capacity. This information is important when describing a vessel’s maneuverability and its ability to sail and turn through ship channels.  
	Type of ship: This data provides information on the vessel’s function. Vessel types include cargo, tanker, and passenger vessels. This information can be used to filter and identify vessels of interest. 
	Ship’s position: The position of vessels, presented in latitude and longitude, shows a specific set of numbers that represents the vessel’s specific location. Latitude and longitude are a common choice of coordinate system and are relevant in determining vessels’ ETA because knowledge of the current location and destination has a great impact on such determination. 
	Position time stamp: Just as location is an important factor, so is the time at which the location is identified. This serves as a benchmark for determining the time of arrival. 
	Heading: This is the compass direction in which the vessel is pointed. This information is useful in determining time of arrival because it specifies the vessel’s direction of travel and nearness to its destination. 
	Course over ground (COG): This is the actual direction of final destination between two points, with respect to the surface of the earth. Heading may differ from course, due to route taken or the effects of wind and current. The COG is relevant in determining time of arrival as it provides information about direction towards destination. 
	Speed over ground (SOG): This is the speed of the vessel relative to the earth’s surface. It identifies how much distance is covered by the vessel in a given period. This factor is important for determining time of arrival as the greater the SOG, the more the distance covered at a given time and lesser time of arrival, provided other factors are unchanged 
	Ship’s draught: This is the vertical distance between the waterline and the bottom of the hull. It determines the minimum depth of water a ship can safely navigate. It is also used to determine the weight of cargo carried by the vessel. 
	2.11.2 PortVision as a Source of AIS Data 
	One of the well-known providers of AIS data is PortVision by Oceaneering International, Inc. PortVision is a Web-based service that provides real-time and historical transit data of maritime vessel operations in ports, inland waterways and oceans. PortVision also supports location reporting for vessels at sea through satellite-based tracking. First deployed in early 2007, PortVision has facilitated a compelling increase in efficiency, cost savings, and safety and security of waterways. PortVision has also p
	With PortVision, users can leverage AIS transmissions to support their businesses and experience more efficient business practices. PortVision records these transmissions at certain intervals then uses the data to locate vessels and determine vessel movements and tracks. It is now possible to deploy an information system that provides real-time vessel locations and recorded vessel movements for all commercial ship traffic along the waterway. PortVision currently provides service for major seaports in the US
	 
	 
	Adopted from www.portvision.com  
	Figure 2.9: PortVision Display Page 
	 
	PortVision offers a range of maritime services that includes access to relevant information on vessel movements, terminal/port arrival and departure, and creating and monitoring key points of interests on the portal. Ability to set up notifications of arrival and departure of vessels in zones of interest through e-mails and mobile text messages is a good functionality of the system. Another interesting feature is the provision of animated playback and historical reporting, which allows users to analyze past
	 
	2.11.3 ETA Forecasting Tools 
	One of the crucial factors to consider when deciding which mode of transportation to employ is the reliability and acceptable time of arrival that the system can provide. With this in mind, it becomes necessary to be well informed about the ETA of any means of transportation to be considered. As the word “estimated” implies, it is a rough calculation of the value, number, quantity, or extent of something. The ETA of any mode of transportation does not provide an exact time of arrival; there is room for erro
	Many research efforts have been made to determine and optimize the ETA of different modes of transportation. The different methods developed, regardless of the mode of transportation considered, can be applied to other modes of transportation because all modes share a common ground in terms of the distance traveled and the speed of travel. These efforts have resulted in the application of three different models that can be applied when determining ETA: (a) models based on historical data, (b) multi-linear r
	2.12 Machine Learning 
	Machine learning generally falls into three categories: (1) supervised learning, (2) unsupervised learning, and (3) reinforcement learning (Chao, 2011). 
	2.12.1 Unsupervised Learning 
	Unsupervised learning is the most common learning process in the brain, which makes it very important. According to Dayan (2008), this process studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. In unsupervised learning, target outputs or environmental evaluations are not associated with each input. The system uses prior biases to determine what aspects of the structure of the input should be captu
	2.12.2 Reinforcement Learning 
	According to Sutton and Barto (2017), reinforced learning is a kind of learning that discovers which action will yield the greatest reward. It is basically characterized by trial-and-error searching. The computer is simply given a goal to achieve, and – through the trial and error of interacting with its environment – learns how to achieve that goal. Harmon and Harmon (2001) explain reinforcement learning as an approach to machine intelligence that combines two disciplines to solve problems that neither dis
	2.12.3 Supervised Learning 
	Supervised learning is the most important methodology in machine learning and is central to the processing of non-linear data. According to Cunningham et al. (2011), supervised 
	learning generally entails mapping a set of input variables X and an output variable Y and applying this mapping to predict the outputs for future data.  
	Of these categories of machine learning, supervised learning has been used by researchers for predicting ETA. It has leveraged the availability of historical trip data where there is information of input variables and the actual time of arrival. When applied to real-world problems, it follows the steps described in Figure 2.9. 
	 
	Adopted from Kotsiantis (2007) 
	Figure 2.10: Process of Supervised Machine Learning 
	 
	As explained above, supervised learning is the most important method of machine learning. Delving into a few of the algorithms that operate in this way will provide a better understanding of the method. Kotsiantis (2007) stated that amongst supervised learning algorithms, the multilayered perceptron also known as Artificial Neural Network (ANN) and Support Vector Machines (SVMs) tend to perform much better when dealing with multi-dimensions and continuous features. Some of the characteristics shared by ANN 
	 Large sample size is required to optimize their prediction accuracy; 
	 Large sample size is required to optimize their prediction accuracy; 
	 Large sample size is required to optimize their prediction accuracy; 

	 They perform better when multicollinearity is present and a nonlinear relationship exists between input and output; 
	 They perform better when multicollinearity is present and a nonlinear relationship exists between input and output; 

	 They require more training time as they learn more slowly than other supervised learning algorithms; 
	 They require more training time as they learn more slowly than other supervised learning algorithms; 

	 Memory space for execution is usually smaller than the training space; 
	 Memory space for execution is usually smaller than the training space; 


	 They have more parameters than other techniques; and   
	 They have more parameters than other techniques; and   
	 They have more parameters than other techniques; and   

	 They have poor interpretability, which makes their principle of operation hard to understand. 
	 They have poor interpretability, which makes their principle of operation hard to understand. 


	Neural Network 
	Khajanchi (2003) defined a Neural Network (NN) as an information-processing technique developed from the concept of biological nervous systems. Unlike traditional statistical methods, a neural network has the ability to model non-linear problems and perform predictive analysis where relationships are not constant. Neural networks can identify complex trends that are difficult or impossible for humans or other computer techniques to detect. Neural networks derive their strength from their ability to recogniz
	 
	 
	Figure 2.11: Architecture of a Three-layered Neural Network 
	 
	Variables A-F are input neurons representing input variables. Variables G-L are neurons in the hidden layers which capture relationships between the input and output layers. Variable M is the output neuron representing the model output. 
	Stergiou and Siganos (1996) categorized the learning process and response of the network into associative mapping and regularity detection. In associative mapping, when there is any addition or distortion to the existing input, the network learns to produce a new pattern in response. In regularity detection, the network response is based on particular properties of the input pattern. A neural network can be a fixed or an adaptive 
	network. When the learning method used for an adaptive network is supervised, the output unit is told by an external teacher how to respond to the input signal. This minimizes any error between the desired output and the computed value.  
	ANN models require extensive training to reduce error in the results (Sun et al. 2007). It was also discovered that the neural network method performed better than other machine learning techniques. USDOT.BOS (2015) showed that neural networks performed better than linear regression models for predicting purposes. Calculating the time of arrival of different modes of transportation is a non-linear process, and major irregularities are present. Therefore, the neural network’s flexibility, non-linearity and a
	2.13 Variable Importance   
	Variable importance represents the statistical significance of each variable present in the data with respect to its effect on the model generated; it quantifies which input variables are more influential than others. Variable importance is the predictor ranking of each variable based on its contribution to the model. Identifying variable importance helps data analysts to eliminate any variables that are contributing little or nothing to the model but increase prediction processing time. Commonly used metho
	2.13.1 Garson’s Algorithm 
	Garson’s algorithm is used to determine variable importance by calculating the weighted connections between nodes of interest. Garson’s approach partitions hidden-output connection weights into components associated with each input neuron using absolute values of connection weights. 
	Figure 2.12 shows a typical neural network with one input layer, one hidden layer, and an output layer. Wi,j indicates the connection weight of the input-hidden layer. Wo,j  also represents the connection weight between the hidden layer and the output layer.  
	 
	Figure 2.12: Typical Neural Network with Input-hidden and Hidden-output Weights 
	 
	Garson’s algorithm is represented by the steps in Tables 2.6-2.9. These steps show the approach employed in quantifying the importance of variables involved in developing the neural network model in Figure 2.12. 
	 
	Table 2.6: Model’s Input-hidden and Hidden-output Weights 
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	…Input n 

	W1,n 
	W1,n 

	W2,n 
	W2,n 

	Wn,n 
	Wn,n 

	Span

	Output 
	Output 
	Output 

	Wo,1 
	Wo,1 

	Wo,2 
	Wo,2 

	Wo,n 
	Wo,n 

	Span


	 
	Contribution of each input neuron to output (Ci,j ) = Wi,j * Wo,i 
	Table 2.7: Contribution of Each Input Neuron to Output Neuron 
	 
	 
	 
	 

	Hidden 1 
	Hidden 1 

	Hidden 2 
	Hidden 2 

	…Hidden n 
	…Hidden n 

	Span

	Input 1 
	Input 1 
	Input 1 

	C1,1 
	C1,1 

	C2,1 
	C2,1 

	Cn,1 
	Cn,1 

	Span

	Input 2 
	Input 2 
	Input 2 

	C1,2 
	C1,2 

	C2,2 
	C2,2 

	Cn,2 
	Cn,2 

	Span

	Input 3 
	Input 3 
	Input 3 

	C1,3 
	C1,3 

	C2,3 
	C2,3 

	Cn,3 
	Cn,3 

	Span

	…Input n 
	…Input n 
	…Input n 

	C1,n 
	C1,n 

	C2,n 
	C2,n 

	Cn,n 
	Cn,n 

	Span


	Relative contribution of each input neuron to output (Ri,j) = Ci,j / Ci,j  
	 
	 
	 
	       
	Table 2.8: Relative Contribution of Each Input Neuron to Output Neuron 
	 
	 
	 
	 

	Hidden 1 
	Hidden 1 

	Hidden 2 
	Hidden 2 

	…Hidden n 
	…Hidden n 

	Sum 
	Sum 

	Span

	Input 1 
	Input 1 
	Input 1 

	R1,1 
	R1,1 

	R2,1 
	R2,1 

	Rn,1 
	Rn,1 

	S1 
	S1 

	Span

	Input 2 
	Input 2 
	Input 2 

	R1,2 
	R1,2 

	R2,2 
	R2,2 

	Rn,2 
	Rn,2 

	S2 
	S2 

	Span

	Input 3 
	Input 3 
	Input 3 

	R1,3 
	R1,3 

	R2,3 
	R2,3 

	Rn,3 
	Rn,3 

	S3 
	S3 

	Span

	…Input n 
	…Input n 
	…Input n 

	R1,n 
	R1,n 

	R2,n 
	R2,n 

	Rn,n 
	Rn,n 

	Sn 
	Sn 

	Span


	 
	Relative importance (Rj) = (Sj/ Sj)*100 
	Table 2.9: Garson’s Relative Importance of Input Variables to Model 
	 
	 
	 
	 
	 


	Importance
	Importance
	Importance
	 


	Span

	Input 1
	Input 1
	Input 1
	Input 1
	 


	R1
	R1
	R1
	 


	Span

	Input 2
	Input 2
	Input 2
	Input 2
	 


	R2
	R2
	R2
	 


	Span

	Input 3
	Input 3
	Input 3
	Input 3
	 


	R3
	R3
	R3
	 


	Span

	…Input n
	…Input n
	…Input n
	…Input n
	 


	Rn
	Rn
	Rn
	 


	Span


	2.13.2 Olden’s Algorithm 
	Olden's algorithm calculates the product of the raw input-hidden and hidden-output connection weights between each input neuron and output neuron and sums the products across all hidden neurons. Similar to Garson’s algorithm, Tables 2.10-2.13 highlight the steps followed using Olden’s algorithm to quantify the variable importance of the neural network model in Figure 2.12. 
	Table 2.10: Model’s Input-hidden and Hidden-output Weights 
	 
	 
	 
	 

	Hidden 1 
	Hidden 1 

	Hidden 2 
	Hidden 2 

	…Hidden n 
	…Hidden n 

	Span

	Input 1 
	Input 1 
	Input 1 

	W1,1 
	W1,1 

	W2,1 
	W2,1 

	Wn,1 
	Wn,1 

	Span

	Input 2 
	Input 2 
	Input 2 

	W1,2 
	W1,2 

	W2,2 
	W2,2 

	Wn,2 
	Wn,2 

	Span

	Input 3 
	Input 3 
	Input 3 

	W1,3 
	W1,3 

	W2,3 
	W2,3 

	Wn,3 
	Wn,3 

	Span

	…Input n 
	…Input n 
	…Input n 

	W1,n 
	W1,n 

	W2,n 
	W2,n 

	Wn,n 
	Wn,n 

	Span

	Output 
	Output 
	Output 

	Wo,1 
	Wo,1 

	Wo,2 
	Wo,2 

	Wo,n 
	Wo,n 

	Span


	 
	Contribution of each input neuron to output (Ci,j )= Wi,j * Wo,i 
	Table 2.11: Contribution of Each Input Neuron to Output 
	 
	 
	 
	 

	Hidden 1 
	Hidden 1 

	Hidden 2 
	Hidden 2 

	…Hidden n 
	…Hidden n 

	Span

	Input 1 
	Input 1 
	Input 1 

	C1,1 
	C1,1 

	C2,1 
	C2,1 

	Cn,1 
	Cn,1 

	Span

	Input 2 
	Input 2 
	Input 2 

	C1,2 
	C1,2 

	C2,2 
	C2,2 

	Cn,2 
	Cn,2 

	Span

	Input 3 
	Input 3 
	Input 3 

	C1,3 
	C1,3 

	C2,3 
	C2,3 

	Cn,3 
	Cn,3 

	Span

	…Input n 
	…Input n 
	…Input n 

	C1,n 
	C1,n 

	C2,n 
	C2,n 

	Cn,n 
	Cn,n 

	Span


	Connecting weight importance of each input variable (CWj) =  C,j               
	                                                                                                              
	 
	Table 2.12: Connecting Weight Importance of Each Input Variable 
	 
	 
	 
	 

	Importance 
	Importance 

	Span

	Input 1 
	Input 1 
	Input 1 

	CW1 
	CW1 

	Span

	Input 2 
	Input 2 
	Input 2 

	CW2 
	CW2 

	Span

	Input 3 
	Input 3 
	Input 3 

	CW3 
	CW3 

	Span

	…Input n 
	…Input n 
	…Input n 

	CWn 
	CWn 

	Span


	Relative importance (R) = (CWi/ CWi)*100 
	Table 2.13: Olden’s Relative Importance of Input Variables to Model 
	 
	 
	 
	 

	Importance 
	Importance 

	Span

	Input 1 
	Input 1 
	Input 1 

	R1 
	R1 

	Span

	Input 2 
	Input 2 
	Input 2 

	R2 
	R2 

	Span

	Input 3 
	Input 3 
	Input 3 

	R3 
	R3 

	Span

	…Input n 
	…Input n 
	…Input n 

	Rn 
	Rn 

	Span


	 
	According to Greenwell et al. (2018), Olden’s algorithm has outperformed Garson’s method in various simulations. Olden et al. (2004) also found that Olden’s algorithm outperformed all other approaches and provided the best result by accurately quantifying variable importance.    
	2.14 Optimization of ETA from AIS Data 
	This section reviews different applications of machine learning to determine either ETA or delays of vessels to ports and terminals. Pani et al. (2015) employed a regression approach in machine learning by using logistic regression, classification tree and random forest to predict the delay or early arrival of vessels. AIS and weather data were used as inputs. This method was used as it can be explained and interpreted more intuitively. The authors employed algorithms provided a qualitative estimate of the 
	Fancello et al. (2010) predicted the ETA of vessels to optimize container handling at Cagliari’s container terminal by examining the calibration of a neural-network-based simulation model. Neural network was developed with different numbers of variables selected based on previous knowledge from previous works. In order to identify the best fit for the system, numerous network-varying characteristics were tested for, which included trying out different learning algorithms, learning parameters (e.g., learning
	Pani et al. (2014) used a data-mining approach to predict the level of daily alarm related to late arrivals. They categorized the delay level into clusters and, using the Ward’s method, identified the best cluster to use to analyze the delay rankings as variables. Three different machine learning models (naïve Bayes, decision trees, and random forests) were used to predict the delay alarm level for each day and tested. Predictive power of the algorithms was determined by 
	comparing the predicted and observed levels of delay. The best results were obtained with the random forest algorithm, which yielded a relatively low absolute error. 
	Parolas (2016) predicted vessels’ ETA at the port of Rotterdam using a neural network and support vector machine. The effect of weather conditions was also analyzed. The following variables were used as inputs with 10 hidden layers and one output layer as ETA.  
	AIS Data: latitude (degrees), longitude (degrees), distance to be covered (km/h), current speed of vessel (km/h), change in speed over last 3 hours (km/h), average speed over last 12 hours (km/h), time used for calculating average speed (hours), length of ship (meters), breadth of ship (meters), and ETA of ship’s agent (number of days). 
	Weather Data: current U-component (m/s), current V-component (m/s), wind U-component (m/s), wind V-component (m/s), peak wave period (s), peak wave direction (degrees), and significant wave height (m). Results obtained from the prediction models were compared to the vessel’s actual time of arrival. Mean absolute error (MAE) and root mean squared error (RMSE) methods were used to evaluate the model performance of the two machine learning methods. Results showed that both the SVMs and NN gave more accurate pr
	2.15 Port of Houston 
	The Port of Houston is a major port with over 150 public and private facilities. The complex is about 25 miles long and very important due to its large tonnage-handling capacity and economic impact. In international waterborne tonnage handled, the Port of Houston is ranked first in the United States. Also, it is ranked second and fifth in terms of total cargo tonnage handled and busiest port in the world, respectively (Qu, 2012). Efficiency of any port depends on the availability of adequate dockside infras
	Navigability: For a port to attract the largest (Neopanamax) vessels, it needs a channel deep and wide enough for effective navigation. MARAD recommends channels 47.6 to 50 feet deep.  
	Air draft restrictions: Some container vessels carry large stacks of containers well above water. Bridges over the channels must be high enough to accommodate such vessels.  
	Terminal capacity: For timely handling of large container vessels, it is necessary for the port to have adequate yard size, labor, cranes and other terminal equipment. 
	Landside connectivity: Ports and container terminals are associated with huge amounts of truck traffic. Therefore, transfer facilities and entrance/exit routes must be properly designed. The 
	reliability of port and off-port facilities greatly depends on their ability to move shipments in and out of the port and through metropolitan areas, which greatly impacts the port’s attractiveness.  
	These characteristics of the Port of Houston have factored largely in its competitiveness. This study’s profile of the Port of Houston focuses on the container operations at its Barbours Cut and Bayport container terminals, which together handled more than 2 million TEUs in recent years. These container terminals have handled approximately 67% of container traffic for the Gulf Coast and 95% of all container traffic for ports in Texas (Payson et al. 2017). 
	2.15.1 Bayport Container Terminal 
	Bayport Container Terminal is recognized as the most modern and environmentally sensitive container terminal in the US with a capacity to handle 2.3 million TEUs annually. Its electronic data exchange capability and computerized inventory makes it efficient in tracking the status and location of individual containers (Bayport Container Terminal). Around 2,500 transactions are conducted daily. This includes receiving of import containerized shipments, delivery of export containerized shipments, receiving and
	2.15.2 Barbours Cut Container Terminal 
	Completed in 1977, Barbours Cut Container Terminal has grown to become a leading container-handling facility in the US Gulf of Mexico. Located at the mouth of Galveston Bay, it is comprised of six berths, roll-on/roll-off platforms, a lash dock and 230 acres of paved marshaling area. With a current capacity for 1.2 million TEUs, the terminal is expected to increase its capacity to 2 million TEUs by the end of the ongoing modernization program (Barbours Cut Container Terminal). A summary of the characteristi
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 2.14: Characteristics of Bayport and Barbours Cut Container Terminals 
	 
	 
	 
	 

	Barbours Cut Terminal 
	Barbours Cut Terminal 

	Bayport Terminal 
	Bayport Terminal 

	Span

	Berthing Docks 
	Berthing Docks 
	Berthing Docks 

	6 docks 
	6 docks 

	3 docks 
	3 docks 

	Span

	TR
	6,000-ft berths 
	6,000-ft berths 

	3,300-ft berths 
	3,300-ft berths 

	Span

	Equipment 
	Equipment 
	Equipment 

	13 wharf cranes 
	13 wharf cranes 

	9 wharf cranes 
	9 wharf cranes 

	Span

	TR
	42 RTG yard cranes 
	42 RTG yard cranes 

	39 RTG yard cranes 
	39 RTG yard cranes 

	Span

	Capacity 
	Capacity 
	Capacity 

	190 acres of loaded container storage 
	190 acres of loaded container storage 

	165 acres of loaded container storage 
	165 acres of loaded container storage 

	Span

	TR
	390 acres of total terminal acreage 
	390 acres of total terminal acreage 

	230 acres of total terminal acreage 
	230 acres of total terminal acreage 

	Span

	TR
	1.4 million TEUs annual throughput 
	1.4 million TEUs annual throughput 

	1.2 million TEUs annual throughput 
	1.2 million TEUs annual throughput 

	Span

	TR
	36,00 TUEs static capacity 
	36,00 TUEs static capacity 

	32,000 TUEs static capacity 
	32,000 TUEs static capacity 

	Span

	Accessibility 
	Accessibility 
	Accessibility 

	Access to all major highways 
	Access to all major highways 

	Access to all major highways 
	Access to all major highways 

	Span

	TR
	Access to two major rail lines 
	Access to two major rail lines 

	 
	 

	Span

	TR
	Terminal gates operating from 7 am to 7 pm weekdays 
	Terminal gates operating from 7 am to 7 pm weekdays 

	Terminal gates operating from  
	Terminal gates operating from  
	7 am to 11 pm weekdays 

	Span

	TR
	Automated gate system with 14 inbound and 12 outbound lanes  
	Automated gate system with 14 inbound and 12 outbound lanes  

	Automated gate system with  
	Automated gate system with  
	28 inbound and 12 outbound lanes 

	Span

	Ship arrival rate (47) 
	Ship arrival rate (47) 
	Ship arrival rate (47) 

	2.10 per day 
	2.10 per day 

	1.53 per day 
	1.53 per day 

	Span

	Ship stay duration (47) 
	Ship stay duration (47) 
	Ship stay duration (47) 

	Triangular distribution with 
	Triangular distribution with 
	minimum of 3.71 hours 

	Triangular distribution with 
	Triangular distribution with 
	minimum of 8.92 hours 

	Span

	TR
	Average of 28.2 hours 
	Average of 28.2 hours 

	Average of 22.54 hours 
	Average of 22.54 hours 

	Span

	TR
	Maximum of 222.42 hours 
	Maximum of 222.42 hours 

	Maximum of 105.33 hours 
	Maximum of 105.33 hours 

	Span


	 
	The first arrival station for container vessels designated for either the Bayport or Barbours Cut container terminals is the Galveston sea buoy. At this stage, the vessels are handed over to operators of Port of Houston who navigate the vessel to its designated container terminal. Such vessels experience wait time at the buoy before and after arrival of the allotted operators.  
	2.16 Port of Houston Operations 
	The Port of Houston operations for container vessels are categorized into activities at the sea buoy and activities at the container terminal. These activities are managed by the joint operations between Houston pilots, the US Coast Guard, US Customs and Border Protection, and the Port Authority.  
	 
	2.16.1 Buoy Operations 
	As stated previously, every vessel entering the Houston Ship Channel is required to stop at the Galveston buoy, where a pilot takes over the sailing to the terminals. Pilots are available 24/7 and the buoy services up to 60 vessels daily. Although congestion at the buoy is unlikely, unforeseen circumstances like oil spillage and fog may cause congestion and backlog of vessels to be serviced. Information on vessels’ arrival time to the buoy is provided to pilots by the shipping agent prior to the vessel’s ar
	activities, like dredging. Beam restriction of the ship channel size makes it impossible for inbound and outbound vessels to meet in the ship channel when one of the vessels has a length greater than 1,000 ft or width greater than 138 ft. Such vessels are also restricted to daylight sailing even if they arrive at the buoy at night. Apart from delays experienced due to the presence of a big vessel, weather conditions and daytime restriction, there is a permissible delay of not more than an hour in situations
	2.16.2 Terminal Operations 
	Discussion of the Port of Houston’s operations would be incomplete without exploring what goes on at the terminal and its gate. This is important in order to identify the Port of Houston’s potential for multimodal systems. Terminal activity is divided into berth operations and gate operations.  
	Berth operations 
	Berth operations at the Port of Houston include basic activities performed by berth operators. Berth operators allot a berth area to arriving vessels, load and unload containers, and store containers. Operations here include basic transfer of containers from ship to shore, which requires quay cranes and RTG yard cranes for transporting the containers to the stacking area or transporting vehicles as needed. 
	Gate operations 
	Bayport and Barbours Cut Container Terminal have similar operational stages: 
	Stage 1 – Inbound Optical Character Recognition (OCR) and ticket generation 
	Stage 2 – Scaling and activity  
	Stage 3 – Outbound OCR and Customs and Border Protection (CBP) inspection 
	Stage 4 – Outbound 
	 
	Optical Character Recognition (OCR): At this stage, images of the truck and container are captured from different angles as well as the license plate, chassis number and container number. These images can be accessed from the Port of Houston website by simply inputting the container number. Drivers proceed through one of the 14 gates for Barbour’s Cut Terminal (BCT) or 28 gates for Bayport Terminal, scan their tickets and are processed based on their mission (drop-off, pickup, or both). After this pre-check
	 
	Scaling and activity: This stage is an automated process where the truck’s weight is calculated. A pick-up or drop-off ticket is then generated. Inside the terminal, trucks drop off and pick up containers, or both, depending on their mission. The trucks then approach the outbound gates, passing through 4 CBP rpm (x-rays) for inspection. 
	 
	Outbound OCR and Customs and Border Protection (CBP) inspection: This stage is composed of an outbound OCR system with 8 lanes at the BCT and 6 lanes at the Bayport terminal. Cameras take images of exiting trucks. The OCR used here is important for damage inspection and allows for automated transaction completion.  
	 
	Outbound: At this stage, drivers scan their ticket to exit the terminal. 
	2.17 Summary 
	Preceding sections comprehensively review a multimodal transportation system, ways of determining ETA, and the role played by accurate ETA in the system’s efficiency.  
	Chapter 3.  Solution Methodology
	Chapter 3.  Solution Methodology
	 

	3.1 Introduction 
	To predict vessels’ time of arrival to port terminals, this study examined this mode of transportation’s characteristics and facilities. Based on availability of data, existing techniques and a literature review, the most efficient method was selected. 
	Machine learning is an algorithm that can learn from data without relying on rules-based programming. Due to the complexity and irregularity observed in the collected data and the fact that traditional statistical forecasting models have limitations in estimating the complexity of a real system (Zhang et al., 1998; Kotsiantis 2007), it became necessary to opt for a neural network. This selection was also reinforced by works in the literature like Fancello (2011) and Parolas (2007) as well as these works’ re
	3.2 Steps for Method Execution 
	The structuring and execution of this approach involved the following steps: a) choice of predictive approach; b) choice of paradigm; c) choice of input variables; d) variable normalization; e) choice of network architecture; f) choice of number of hidden layers and nodes; g) training, validation and testing of the network; h) second leg analysis; and i) interpretation of results. 
	 
	3.2.1 Choice of Predictive Approach  
	Neural network was used as a predictive approach that could be trained to recognize patterns and relationships between independent input variables and the output (time of arrival). 
	3.2.2 Choice of Paradigm  
	The back-propagation algorithm in ANN was employed. It consists of multiple neuron layers, each of which is fully connected to the next. Neurons in the input layer represent the input data with all other neurons mapping the inputs to the output by a linear combination of weight and bias. Its steps consist of 1) feeding forward the values, 2) calculating the error, and 3) propagating it back to earlier layers. 
	3.2.3 Choice of Input Variables  
	Selection of input variables was achieved using prior knowledge from previous related works, and the uniqueness of the port of study. Twelve input variables were chosen: voyage ID, vessel’s International Maritime Organization (IMO) number, length of vessel, beam of vessel, speed, average speed, heading, course, latitude, longitude, distance to buoy, and distance to destination (terminal). The variables were selected due to their relevance to determining ETA. All identified variables have different effects o
	3.2.4 Variable Normalization  
	This step was accomplished after removing outliers from the records. To increase consistency, and for easier data mapping, it was necessary to normalize the variables, appropriately scaling them to the transfer function used. In this case, min-max normalization was used to present the data in a [0,1] range. 
	3.2.5 Choice of Network Architecture  
	Database records were divided into training and testing sets at 80% and 20%, respectively. Once the network was trained, testing for prediction accuracy was evaluated on the test set. 
	3.2.6 Choice of Number of Hidden Layers and Nodes  
	To prevent over- and under-fitting of the network, it was important to use the best number of hidden layers and neurons. 
	3.2.7 Training, Validating and Testing of the Network  
	Training, validating, and testing of the network was conducted with the aid of R software and the Neuralnet, a library that trained the neural networks using back-propagation. The designed network was trained with the training dataset and then tested to confirm the network’s ability to predict the output based on inputs from the testing dataset.  
	3.2.8 Second Leg Analysis 
	The study area has its uniqueness and thus requires a special approach for trips from the pilot point (Sea buoy) to the respective terminals. With this in mind, steps a-g were repeated for data relevant to this portion of the trip, and collected results were summarized. This section aims to reduce any error that may have resulted from the analysis. This portion of the vessel’s trip possesses different attributes because the trip is performed in a controlled environment (ship channel) with many restrictions.
	3.3 Data 
	As mentioned in Section 2, the variables in this analysis are available in AIS databases. They include voyage ID, IMO, length of vessel, beam of vessel, speed, cumulative average speed, heading, course, latitude, longitude, distance to buoy, distance to terminal, arrival time at buoy, and berthing time. Each identified variable has its own effect on ETA and possesses its own level of importance in regard to its impact on the network’s predictive power. All variables are processed to useable datasets to allo
	Data used for this analysis were consolidated from the AIS and USCG databases. AIS historical records for container vessels called to the Bayport and Barbours Cut Container Terminals in the Port of Houston were collected. Information retrieved from the AIS records include the static information of the vessel and data point information, such as length of vessel, beam of vessel, current speed, heading, course, and location showing the latitude and longitude. These records were tied to information collected fr
	at the buoy and terminal. Times recorded in the USCG database were also compared with times received from AIS data for the same vessel. Cumulative average speed, distance to buoy and distance to terminal were used as variables in this analysis. They were calculated from the collected AIS and USGC datasets. 
	In total, 237 trip records were randomly selected from 2016 to 2018. Collected data were based on the difference between record stamp time and arrival time. Records were categorized into timeframes that consider both medium and short time horizons. The medium time horizon was identified as 5 days prior to the vessel’s arrival, and aims to assist planning activities for port operators and other stakeholders. The short time horizon considers 24 hours prior to the vessel’s arrival. The categories of collected 
	Table 3.1: Summary of Data Used for Analysis 
	Category 
	Category 
	Category 
	Category 

	Duration of data 
	Duration of data 

	Frequency 
	Frequency 

	Data volume 
	Data volume 

	Span

	1 
	1 
	1 

	5 days to arrival 
	5 days to arrival 

	Hourly 
	Hourly 

	14,473 
	14,473 

	Span

	2 
	2 
	2 

	1 day to arrival 
	1 day to arrival 

	5 minutes 
	5 minutes 

	17,855 
	17,855 

	Span

	3 
	3 
	3 

	Buoy to terminal 
	Buoy to terminal 

	5 minutes 
	5 minutes 

	988 
	988 

	Span


	The different parameters are described below and categorized into input and output variables. 
	3.3.1 Input Variables 
	The input variables for this analysis are highlighted below. 
	Voyage ID 
	The voyage ID provides the uniqueness for each identified trip. This parameter is useful to the network as it ties together all data specific to a vessel and throughout a given trip. It is the basis for identifying patterns created in the trip as it relates different data points for a specific trip together. In the dataset, voyage IDs are unique numbers that are only repeated when the same trip is undertaken again. 
	Length of vessel 
	Vessel length is one of the static data collected for each data point. This measure is a great variable for determining the vessel’s size. It is relevant to the network for ETA prediction since a vessel’s size determines its speed and maneuverability. Length of a vessel in this dataset is expressed in meters.  
	Beam of vessel 
	Similar to the length of the vessel, the beam is also a measure of a vessel’s size. Coupled with vessel length, beam describes the vessel’s platform area, expressed in meters. 
	 
	 
	 
	IMO number 
	The International Maritime Organization (IMO) number is a unique ID for a particular vessel; however, in the data points collected, there was repetition of an IMO for every trip by the same vessel with a different voyage ID. 
	Speed 
	A vessel’s speed is a major factor that determines its time of arrival to port. Generally, the greater the speed, the lower the time required to complete a trip, other variables kept constant. This makes the speed of travel an indispensable parameter in this analysis.  
	Average speed 
	It was necessary to calculate a vessel’s average speed from a time previous data point. This variable gives the network a better view of previous speeds by the vessel. This compensates for any sudden drop or increase in the vessel’s speed throughout the trip.   
	Heading 
	The heading provides the network with the vessel’s direction at that point. The network tries to understand and be trained on the direction taken by the vessel at such location.  
	Course 
	The course of the vessel provides the network with the direction of its final destination from its current location. Expressed in degrees, it improves the network’s directional sense. 
	Latitude and longitude 
	Latitude and longitude are the basis for determining a vessel’s location at different data points recorded. It is relevant to the network as it is a known fact that the closer you are to destination, the faster you can reach it. Hence, the longitude and latitude expressed in decimal format were included in this analysis. 
	Distance to buoy 
	The linear distance between a vessel’s current location and the sea buoy was an important variable in this analysis. We used the Haversine distance, which is based on a spherical model of the earth, to calculate this distance. Haversine distance is defined as follows:  
	                    )       )    √    (      )      )      )    (      )               (5) 
	where 
	           first and second longitude values, respectively 
	           first and second latitude values, respectively 
	   : approximate radius of Earth (6,378,137 m) 
	Although the linear distance does not represent the actual path taken by the vessel, it provides a rough estimate of the vessel’s distance from the destination. Linear distance for this analysis is expressed in miles. 
	Distance terminal 
	Similar to the distance to the buoy, the distance to the terminal is calculated using the latitudes and longitudes of the current location and destination. 
	3.3.2 Output Variables 
	Buoy arrival time 
	This is the difference between the data point generation time and the vessel’s actual time of arrival at the buoy, expressed in minutes. This is the output parameter that the network learns to predict. Buoy arrival time was determined by the following equation: 
	ATA = ((DATA - DDGT)×1440)+((HATA-HDGT )×60)+(MATA-MDGT)         (6) 
	where 
	D DGT : data point generation date (mm/dd/yyyy) 
	DATA : ATA date (mm/dd/yyyy) 
	H DGT : data point generation hour 
	HATA : ATA hour 
	M DGT : data point generation minute 
	MATA : ATA minute 
	Berthing time 
	Similar to actual time of arrival, the berth time is also the difference between the data point generation time and the actual berth time of the vessel at the terminal. This serves as the output parameter for the second leg of the trip from the buoy to the container terminal. Berth time is derived from the expression below. 
	Berth Time = ((DBT-DDGT)×1440)+((HBT -HDGT )×60)+(MBT -MDGT)         (7) 
	where 
	D DGT : data point generation date (mm/dd/yyyy) 
	DBT : ATA date (mm/dd/yyyy) 
	H DGT : data point generation hour 
	HBT : ATA hour 
	M DGT : data point generation minute 
	MBT : ATA minute 
	3.4 Procedure 
	The first step was to normalize each dataset. Normalization is essential to avoid the large impact that some variables can have on the prediction variable due to its scale. Min-max normalization was employed. Using the index variable, we created training and test datasets; we used 80% of each dataset as the training dataset and the remaining 20% as the testing dataset.  
	There is no fixed rule on how many hidden layers or hidden neurons to use in a network. Alice (2015) stated that the number of neurons should be between the input layer size and the output layer size, usually 2/3 of the input layer size. The number of hidden layers and nodes in this analysis were selected through trial and error. In this section, we borrowed ideas from Vishwakarma (1994), who recommended comparing node size for one hidden layer and two hidden layers to identify the best option. Hence, it wa
	Table 3.2: Basis for Architecture Selection 
	1 Hidden Layer 
	1 Hidden Layer 
	1 Hidden Layer 
	1 Hidden Layer 

	2 Hidden Layers 
	2 Hidden Layers 

	Span

	Neurons 
	Neurons 
	Neurons 

	Error 
	Error 

	Neurons 
	Neurons 

	Error 
	Error 

	Neurons 
	Neurons 

	Error 
	Error 

	Neurons 
	Neurons 

	Error 
	Error 

	Span

	10 
	10 
	10 

	2.0019 
	2.0019 

	5,5 
	5,5 

	2.0411 
	2.0411 

	6,4 
	6,4 

	9.4283 
	9.4283 

	7,3 
	7,3 

	2.9491 
	2.9491 

	Span

	9 
	9 
	9 

	2.8078 
	2.8078 

	5,4 
	5,4 

	2.7014 
	2.7014 

	6,3 
	6,3 

	3.0238 
	3.0238 

	7,2 
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	The network that was built using one hidden layer with 10 neurons produced the least network error. This made the structure of the network [11, 10, 1], representing 11 input neurons, one hidden layer with 10 neurons, and 1 output neuron (Fig. 3.1).  
	 
	Figure 3.1: Architecture of Neural Network Developed for ETA Prediction 
	 
	The output layer of the NN is represented using a single neuron, which is aimed at predicting an ETA as close as possible to the actual time of arrival (ATA). 
	 
	3.4.1 Training Phase 
	During training, 80% of records that included the input variables alongside the output variable (actual time of arrival) were provided to the NN. The aim of this training phase is for the network to identify patterns and relationships between input and output variables by finding the optimal weights that connect the NN layers. The network was trained through back-propagation. 
	 
	3.4.2 Testing Phase 
	The testing phase is when the error of the NN is determined. It was the phase responsible for determining the developed network’s accuracy. Here, another dataset without an output variable was provided to the network, and the network was made to predict the output (vessel arrival time). 
	The study area was unique and thus required a special approach for trips from the pilot point (sea buoy) to the respective terminals. With this in mind, the above-mentioned procedures were repeated using data relevant to this portion of the trip. This section considers the complete trip up to the terminals, where transfer of modes occurs. This portion of the vessel trip possesses different attributes, because the trip is performed in a controlled environment 
	(ship channel) with many restrictions. The output parameter for this leg of the trip was the berthing time. The distance applied to the network for this leg was the distance from the buoy to the terminals. The NN developed was used to predict the arrival time to terminals at different locations (Bayport and Barbours Cut). 
	 
	3.4.3 Error Metrics Used for Evaluating ETA Predictions 
	The model developed for determining the vessel’s ETA to the Port of Houston was evaluated using two error metrics: mean absolute error (MAE) and root mean square error (RMSE). The MAE metric is a representation of the average error in minutes, whereas the RMSE supplies the variance of the prediction errors and is always greater than the MAE. The MAE is determined as follows:  
	 
	MAE  ∑                            (8) 
	 
	In a similar pattern, the RMSE was determined using the formula: 
	RMSE =√∑      )                             (9) 
	 
	where  
	 
	Xi : actual time of arrival 
	Yi : predicted time of arrival from the model 
	n : the number of observations 
	3.5 Results 
	This section presents the results obtained by applying the described methodology. The focus is more on the errors of the methodology, which is a representation of how well the model captured and learned from the presented data. It identifies the level of discrepancy between the ETA and the ATA at the Port of Houston. For the medium time horizon, errors were estimated at different time intervals, between 5 days and one day to arrival. Figure 3.2 shows trends in the accuracy of the predictions. This result wa
	 
	 
	Figure 3.2: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for the Last Five Days before Arrival at Buoy 
	 
	Predictions made in the last 24 hours to arrival also followed the same trend as the last 5 days readings. There was a steady decrease in prediction error as the vessel approached the final hour of the trip to the buoy. The trend in the error level at different hours is presented in Figure 3.3. At 24 hours to arrival, the discrepancy in the predicted time of arrival was 246 and 345 minutes for MAE and RMSE, respectively. As the vessel approached the destination and within the last two hours before arrival a
	 
	Figure 3.3: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for the Last 24 Hours before Arrival at Buoy 
	 
	Prediction error data was collected for trips between the pilot point (buoy) and terminals. Results for Barbours Cut and Bayport terminals were estimated separately. Data points for predictions on both legs of the trip differ in quantity; hence, the expressions used for calculating the total prediction errors are as follows: 
	 
	 
	                                   (5) 
	 
	          √                             (6) 
	where 
	 n1 : number of prediction records for trips between reference point and buoy 
	 n2 : number of prediction records for trips between buoy and terminal 
	 MAE1 : mean absolute error for trips between reference point and buoy 
	 MAE2 : mean absolute error for trips between buoy and terminal  
	 RMSE1 : root mean square error for trips between reference point and buoy 
	 RMSE2 : root mean square error for trips between buoy and terminal   
	 
	Figures 3.4 and 3.5 show the MAE and RMSE of prediction for trips to Barbours Cut Container Terminal when the reference point is between the last 5 days and last 24 hours to pilot point. 
	 
	 
	Figure 3.4: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for Trips to Barbours Cut Terminal Considering Five Days before Arrival at Buoy 
	 
	 
	 
	Figure 3.5: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for Trips to Barbours Cut Terminal Considering 24 Hours before Arrival at Buoy 
	  
	For trips to Barbours Cut Terminal, the model’s prediction strength improved beyond what were experienced when only trips to the sea buoy were analyzed. These predictions followed the same trend of reduction in error as the vessels approached the terminal. Comparing these results to those obtained for trips to the sea buoy shows that the predictive strength improved. Five days before arrival at sea buoy, the MAE and RMSE were at 1055 and 1510 minutes, respectively, for the predictions made to the sea buoy. 
	 
	 
	  
	 
	Figure 3.6: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for Trips to Bayport Terminal Considering Five Days before Arrival at Buoy 
	 
	 
	Figure 3.7: Mean Absolute and Root Mean Square Errors on ETA Predictions from Developed Neural Networks for Trips to Bayport Terminal Considering 24 Hours before Arrival at Buoy 
	 
	At the Bayport terminal level, the NN produced up to a 5% improvement (5% reduced MAE) in predictive strength as compared to predictions made at the buoy level. In terms of the RMSE, there was an improvement of about 4% in the predictive strength of the network when comparing predictions made at the buoy and Bayport terminal level.  
	 
	After presenting the result obtained from the neural network, understanding the contribution of the variables in predictions made at different time-frames will provide a better explanation of the knowledge extracted from the data. Identifying the contribution of the variables means quantifying the importance of the variable used in the network. 
	 
	Table 3.3 presents the results obtained from calculating the variable importance over the last 24 hours of the vessel’s arrival time predictions. Olden’s algorithm was employed to quantify and identify variables at different hours. 
	 
	 
	 
	 
	 
	Table 3.3: Variable Importance over the Last 24 Hours of the Vessel’s Arrival Time Prediction 
	 
	 
	 
	 

	Last Hours 
	Last Hours 
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	2 
	2 

	4 
	4 

	6 
	6 

	8 
	8 

	10 
	10 

	12 
	12 

	14 
	14 

	16 
	16 

	18 
	18 

	20 
	20 

	22 
	22 

	24 
	24 

	Span

	Voyage 
	Voyage 
	Voyage 
	ID 

	3.1 
	3.1 

	1.3 
	1.3 

	5.7 
	5.7 

	3.4 
	3.4 

	0.4 
	0.4 

	1.8 
	1.8 

	0.2 
	0.2 

	0.3 
	0.3 

	1.1 
	1.1 

	0.2 
	0.2 

	1.3 
	1.3 

	0.6 
	0.6 

	Span

	IMO 
	IMO 
	IMO 

	22.1 
	22.1 

	10.2 
	10.2 

	0.9 
	0.9 

	3.3 
	3.3 

	0.9 
	0.9 

	7.7 
	7.7 

	0.7 
	0.7 

	1.2 
	1.2 

	2.5 
	2.5 

	0.0 
	0.0 

	16.3 
	16.3 

	0.8 
	0.8 

	Span

	Length 
	Length 
	Length 

	10.6 
	10.6 

	1.9 
	1.9 

	0.1 
	0.1 

	0.2 
	0.2 

	0.5 
	0.5 

	3.1 
	3.1 

	0.0 
	0.0 

	1.0 
	1.0 

	2.3 
	2.3 

	0.6 
	0.6 

	5.6 
	5.6 

	0.1 
	0.1 

	Span

	Beam 
	Beam 
	Beam 

	2.5 
	2.5 

	4.3 
	4.3 

	9.4 
	9.4 

	1.7 
	1.7 

	4.2 
	4.2 

	5.4 
	5.4 

	91.2 
	91.2 

	16.8 
	16.8 

	56.7 
	56.7 

	96.0 
	96.0 

	59.3 
	59.3 

	71.0 
	71.0 

	Span

	Heading 
	Heading 
	Heading 

	1.5 
	1.5 

	1.0 
	1.0 

	22.1 
	22.1 

	14.6 
	14.6 

	14.0 
	14.0 

	17.0 
	17.0 

	1.0 
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	2.5 
	2.5 

	11.6 
	11.6 

	1.5 
	1.5 

	1.7 
	1.7 

	9.3 
	9.3 

	Span

	Speed 
	Speed 
	Speed 

	20.8 
	20.8 

	4.2 
	4.2 

	4.3 
	4.3 

	11.5 
	11.5 

	3.0 
	3.0 

	2.7 
	2.7 

	2.4 
	2.4 

	1.4 
	1.4 

	1.7 
	1.7 

	0.3 
	0.3 

	3.5 
	3.5 

	0.3 
	0.3 

	Span

	Average Speed 
	Average Speed 
	Average Speed 

	10.8 
	10.8 

	29.1 
	29.1 

	9.5 
	9.5 

	25.3 
	25.3 

	0.1 
	0.1 

	11.4 
	11.4 

	1.5 
	1.5 

	1.1 
	1.1 

	1.5 
	1.5 

	0.1 
	0.1 

	0.4 
	0.4 

	4.3 
	4.3 

	Span

	Course 
	Course 
	Course 

	0.1 
	0.1 

	2.2 
	2.2 

	0.6 
	0.6 

	27.3 
	27.3 

	0.1 
	0.1 

	0.0 
	0.0 

	0.3 
	0.3 

	0.0 
	0.0 

	0.3 
	0.3 

	0.1 
	0.1 

	0.7 
	0.7 

	0.1 
	0.1 

	Span

	Latitude 
	Latitude 
	Latitude 

	1.9 
	1.9 

	5.4 
	5.4 

	0.1 
	0.1 

	0.4 
	0.4 

	1.1 
	1.1 

	4.4 
	4.4 

	0.1 
	0.1 

	3.5 
	3.5 

	0.0 
	0.0 

	0.4 
	0.4 

	1.6 
	1.6 

	5.1 
	5.1 

	Span

	Longitude 
	Longitude 
	Longitude 

	18.4 
	18.4 

	24.7 
	24.7 

	23.2 
	23.2 

	4.3 
	4.3 

	17.1 
	17.1 

	38.6 
	38.6 

	1.7 
	1.7 

	16.9 
	16.9 

	2.7 
	2.7 

	0.4 
	0.4 

	0.8 
	0.8 

	1.6 
	1.6 

	Span

	Distance 
	Distance 
	Distance 
	to Buoy 

	8.3 
	8.3 

	15.6 
	15.6 

	24.2 
	24.2 

	8.0 
	8.0 

	58.7 
	58.7 

	7.8 
	7.8 

	0.9 
	0.9 

	55.4 
	55.4 

	19.6 
	19.6 

	0.5 
	0.5 

	8.7 
	8.7 

	6.8 
	6.8 

	Span


	 
	The importance of vessel length in the last two hours of the prediction stood out. The result in Table 3.3 shows a significant increase in the importance of length when compared to earlier hours of the trip. There was a 457% increase from the last level of relative importance for length, from 1.9% to 10.6%. This increased importance is due to the available sailable area during these periods. As the vessel approaches a region of higher vessel density, the effects of vessel length on speed and maneuverability
	 
	Highest speed importance was also observed at this time interval as greater caution is required in this region, which tends to affect sailing speed. Sailing speed during this segment of the trip is usually at its lowest. In the last two hours of the trip, speed was the most important variable. It should also be noted that the importance of speed in the model rose by about 395% compared to the previous 4 hours of the trip speed, from 4.2 to 20.8% of relative importance. Hence, the influence of speed as a var
	Latitude and longitude as factors that identify the location of a vessel have been identified as important variables for predicting vessel arrival time as they also determine the distance between the vessel’s current location and destination. Due to the location of the Port of Houston and the path followed, the majority of trips made by vessels heading to the port are northward. Hence, these movements are along the longitude which justifies greater values recorded in importance level of longitudes as compar
	3.6 Summary 
	A description of the approach employed in determining the ETA was presented. Types of data used were described, and the procedure was explained.  Results of this approach were also presented.   
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Chapter 4.  Summary and Conclusions
	Chapter 4.  Summary and Conclusions
	 

	4.1 Introduction 
	A neural network was applied to predict the ETA of vessels. The developed network produced interpretable results, which require a summary based on its applicability. Results of the analysis were presented in Section 3.5 with brief interpretations. The rest of this chapter is organized as follows. Section 4.2 provides a summary of the results, and concludes with the author’s views. Section 4.3 details directions for further research to improve ETA prediction using machine learning. 
	4.2 Summary and Conclusions 
	This research described a neural network approach that can be used to generate the ETA of vessels to port terminals. From the results collected, we found that there is great potential in the use of neural networks in this pursuit. Our findings show that near exact predictions can be achieved even without prior estimations by vessel captains. The results indicated that the farther from the destination, the greater the error in prediction. This is also evident in the comparison of prediction errors between Ba
	4.3 Directions for Future Research 
	For further studies, improvements can be made by exploring a larger dataset. Considering other machine learning algorithms will also help to reveal possibilities for improvement. 
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